
Chapter 2
Constant Envelope Modulations

2.1 The Need for Constant Envelope
Digital communication systems operate in the presence of path loss and

atmospheric-induced fading. In order to maintain sufficient received power at
the destination, it is required that a device for generating adequate transmitter
output power based on fixed- but-limited available power be employed, exam-
ples of which are traveling-wave tube amplifiers (TWTAs) and solid-state power
amplifiers (SSPAs) operated in full- saturation mode to maximize conversion
efficiency. Unfortunately, this requirement introduces amplitude modulation-
amplitude modulation (AM-AM) and amplitude modulation-phase modulation
(AM-PM) conversions into the transmitted signal. Because of this, modulations
that transmit information via their amplitude, e.g., quadrature amplitude mod-
ulation (QAM), and therefore need a linear amplifying characteristic, are not
suitable for use on channels operated in the above maximum transmitter power
efficiency requirement.1 Another consideration regarding radio frequency (RF)
amplifier devices that operate in a nonlinear mode at or near saturation is the
spectral spreading that they reintroduce due to the nonlinearity subsequent to
bandlimiting the modulation prior to amplification. Because of the need for the
transmitted power spectrum to fall under a specified mask imposed by regulat-
ing agencies such as the FCC or International Telecommunications Union (ITU),
the modulation must be designed to keep this spectral spreading to a minimum.
This constraint necessitates limiting the amount of instantaneous amplitude fluc-
tuation in the transmitted waveform in addition to imposing the requirement for
constant envelope.

1 An approach whereby it might be possible to generate QAM-type modulations using separate
nonlinearly operated high-power amplifiers on the inphase (I) and quadrature (Q) channels
is currently under investigation by the author.
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Because of the above considerations regarding the need for high transmit-
ter power efficiency, it is clearly desirable to consider modulations that achieve
their bandwidth efficiency by means other than resorting to multilevel amplitude
modulation. Such constant envelope modulations are the subject of discussion
in the first part of this monograph. Because of the large number of possible can-
didates, to keep within the confines of a reasonable size book, we shall restrict
our attention to only those that have some form of inphase-quadrature phase
(I-Q) representation and as such an I-Q form of receiver.

2.2 Quadriphase-Shift-Keying and Offset (Staggered)
Quadriphase-Shift-Keying
M -ary phase-shift-keying (M -PSK) produces a constant envelope signal that

is mathematically modeled in complex form2 as

s̃ (t) =
√

2Pej(2πfct+θ(t)+θc) = S̃ (t) ej(2πfct+θc) (2.2 1)

where P is the transmitted power, fc is the carrier frequency in hertz, θc is
the carrier phase, and θ(t) is the data phase that takes on equiprobable values
βi = (2i− 1)π/M, i = 1, 2, · · · ,M , in each symbol interval, Ts. As such, θ(t) is
modeled as a random pulse stream, that is,

θ(t) =
∞∑

n=−∞
θnp (t− nTs) (2.2 2)

where θn is the information phase in the nth symbol interval, nTs < t ≤ (n+1)Ts,
ranging over the set of M possible values βi as above, and p(t) is a unit amplitude
rectangular pulse of duration Ts seconds. The symbol time, Ts, is related to
the bit time, Tb, by Ts = Tb log2 M and, thus, the nominal gain in bandwidth
efficiency relative to binary phase-shift-keying (BPSK), i.e., M = 2, is a factor
of log2 M . The signal constellation is a unit circle with points uniformly spaced
by 2π/M rad. Thus, the complex signal transmitted in the nth symbol interval
is

s̃(t) =
√

2Pej(2πfct+θn+θc), nTs < t ≤ (n+ 1)Ts, n = −∞, · · · ,∞ (2.2 3)

2 The actual (real) transmitted signal is s (t) = Re {s̃(t)} =
√

2P cos
(
2πfct + θ(t) + θc

)
.
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Note that because of the assumed rectangular pulse shape, the complex base-
band signal S̃ (t) =

√
2Pejθn is constant in this same interval and has envelope∣∣∣S̃ (t)

∣∣∣ =
√

2P .
A special case of M -PSK that has an I-Q representation is quadriphase-shift-

keying (QPSK), and corresponds to M = 4. Here it is conventional to assume
that the phase set {βi} takes on values π/4, 3π/4, 5π/4, 7π/4. Projecting these
information phases on the quadrature amplitude axes, we can equivalently write
QPSK in the nth symbol interval in the complex I-Q form3

s̃(t) =
√
P (aIn + jaQn) ej(2πfct+θc), nTs < t ≤ (n+ 1)Ts (2.2 4)

where the information amplitudes aIn and aQn range independently over the
equiprobable values ±1. Here again, because of the assumed rectangular pulse
shape, the complex baseband signal S̃(t) =

√
P (aIn + jaQn) is constant in this

same interval. The real transmitted signal corresponding to (2.2-4) has the form

s (t) =
√
PmI (t) cos (2πfct+ θc)−

√
PmQ (t) sin (2πfct+ θc) ,

mI (t) =
∞∑

n=−∞
aInp (t− nTs), mQ (t) =

∞∑
n=−∞

aQnp (t− nTs) (2.2 5)

If one examines the form of (2.2-4) it becomes apparent that a large fluctua-
tion of the instantaneous amplitude between symbols corresponding to a 180-deg
phase reversal can occur when both aIn and aQn change polarity at the same
time. As mentioned in Sec. 2.1, it is desirable to limit the degree of such fluc-
tuation to reduce spectral regrowth brought about by the transmit amplifier
nonlinearity, i.e., the smaller the fluctuation, the smaller the sidelobe regenera-
tion and vice versa. By offsetting (staggering) the I and Q modulations by Ts/2 s,
one guarantees the fact that aIn and aQn cannot change polarity at the same
time. Thus, the maximum fluctuation in instantaneous amplitude is now limited
to that corresponding to a 90-deg phase reversal (i.e., either aIn or aQn, but
not both, change polarity). The resulting modulation, called offset (staggered)
QPSK (OQPSK), has a signal of the form

3 One can think of the complex carrier as being modulated now by a complex random pulse

stream, namely, ã(t) =
∑∞

n=−∞
(
aIn + jaQn

)
p (t− nTs).
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s (t) =
√
PmI (t) cos (2πfct+ θc)−

√
PmQ (t) sin (2πfct+ θc) ,

mI (t) =
∞∑

n=−∞
aInp (t− nTs), mQ (t) =

∞∑
n=−∞

aQnp

(
t−

(
n+

1
2

)
Ts

)

(2.2 6)

While it is true that for M -PSK with M = 2m and m an arbitrary integer,
the information phases can be projected on the I and Q coordinates and as such
obtain, in principle, an I-Q transmitter representation, it should be noted that
the number of possible I-Q amplitude pairs obtained from these projections ex-
ceeds M . Consequently, decisions on the resulting I and Q multilevel amplitude
signals at the receiver are not independent in that each pair of amplitude deci-
sions does not necessarily render one of the transmitted phases. Therefore, for
M ≥ 8 it is not practical to view M -PSK in an I-Q form.

The detection of an information phase can be obtained by combining the
detections on the I and Q components of this phase. The receiver for QPSK is
illustrated in Fig. 2-1(a) while the analogous receiver for OQPSK is illustrated in
Fig. 2-1(b). The decision variables that are input to the hard-limiting threshold
devices are

yIn = aIn
√
PTs +NIn

yQn = aQn
√
PTs +NQn


 (2.2 7)

where for QPSK

NIn = Re

{∫ (n+1)Ts

nTs

Ñ (t) dt

}

NQn = Im

{∫ (n+1)Ts

nTs

Ñ (t) dt

}




(2.2 8)

whereas for OQPSK
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NIn = Re

{∫ (n+1)Ts

nTs

Ñ (t) dt

}

NQn = Im

{∫ (n+3/2)Ts

(n+1/2)Ts

Ñ (t) dt

}




(2.2 9)

In either case, NIn, NQn are zero mean Gaussian random variables (RVs) with
variance σ2

N = N0Ts/2 and thus conditioned on the data symbols, yIn, yQn are
also Gaussian RVs with the same variance.

Fig. 2-1(a).  Complex form of optimum receiver for ideal coherent detection of 

QPSK over the AWGN. 
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2.3 Differentially Encoded QPSK and Offset (Staggered)
QPSK

In an actual coherent communication system transmitting M -PSK modula-
tion, means must be provided at the receiver for establishing the local demodu-
lation carrier reference signal. This means is traditionally accomplished with the
aid of a suppressed carrier-tracking loop [1, Chap. 2]. Such a loop for M -PSK
modulation exhibits an M -fold phase ambiguity in that it can lock with equal
probability at the transmitted carrier phase plus any of the M information phase
values. Hence, the carrier phase used for demodulation can take on any of these
same M phase values, namely, θc + βi = θc + 2iπ/M, i = 0, 1, 2, · · · ,M − 1.
Coherent detection cannot be successful unless this M -fold phase ambiguity is
resolved.

One means for resolving this ambiguity is to employ differential phase en-
coding (most often simply called differential encoding) at the transmitter and
differential phase decoding (most often simply called differential decoding) at
the receiver following coherent detection. That is, the information phase to be
communicated is modulated on the carrier as the difference between two adjacent
transmitted phases, and the receiver takes the difference of two adjacent phase
decisions to arrive at the decision on the information phase.4 In mathematical
terms, if ∆θn were the information phase to be communicated in the nth trans-
mission interval, the transmitter would first form θn = θn−1 + ∆θn modulo 2π
(the differential encoder) and then modulate θn on the carrier.5 At the receiver,
successive decisions on θn−1 and θn would be made and then differenced modulo
2π (the differential decoder) to give the decision on ∆θn. Since the decision on
the true information phase is obtained from the difference of two adjacent phase
decisions, a performance penalty is associated with the inclusion of differential
encoding/decoding in the system.

For QPSK or OQPSK, the differential encoding/decoding process can be
performed on each of the I and Q channels independently. A block diagram of
a receiver for differentially encoded QPSK (or OQPSK) would be identical to
that shown in Fig. 2-1(a) [or Fig. 2-1(b)], with the inclusion of a binary differ-
ential decoder in each of the I and Q arms following the hard-decision devices [see

4 Note that this receiver (i.e., the one that makes optimum coherent decisions on two successive
symbol phases and then differences these to arrive at the decision on the information phase)
is suboptimum when M > 2 [2]. However, this receiver structure, which is the one classically
used for coherent detection of differentially encoded M -PSK, can be arrived at by a suitable
approximation of the likelihood function used to derive the true optimum receiver, and at
high signal-to-noise ratio (SNR), the difference between the two becomes mute.

5 Note that we have shifted our notation here insofar as the information phases are concerned
so as to keep the same notation for the phases actually transmitted.
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Figs. 2-2(a) and 2-2(b)].6 Inclusion of differentially encoded OQPSK in our
discussion is important since, as we shall see later on, other forms of modulation,
e.g., minimum-shift-keying (MSK), have an I-Q representation in the form of
pulse-shaped, differentially encoded OQPSK.

2.4 π/4-QPSK: A Variation of Differentially Encoded QPSK
with Instantaneous Amplitude Fluctuation Halfway
between That of QPSK and OQPSK

Depending on the set of phases, {∆βi}, used to represent the information
phase, ∆θn, in the nth transmission interval, the actual transmitted phase, θn, in
this same transmission interval can range either over the same set, {βi} = {∆βi},
or over another phase set. If for QPSK, we choose the set ∆βi = 0, π/2, π, 3π/2
to represent the information phases, then starting with an initial transmitted
phase chosen from the set π/4, 3π/4, 5π/4, 7π/4, the subsequent transmit-
ted phases, {θn}, will also range over the set π/4, 3π/4, 5π/4, 7π/4 in every
transmission interval. This is the conventional form of differentially encoded
QPSK, as discussed in the previous section. Now suppose instead that the
set ∆βi = π/4, 3π/4, 5π/4, 7π/4 is used to represent the information phases,
{∆θn}. Then, starting, for example, with an initial phase chosen from the
set π/4, 3π/4, 5π/4, 7π/4, the transmitted phase in the next interval will range
over the set 0, π/2, π, 3π/2. In the following interval, the transmitted phase
will range over the set π/4, 3π/4, 5π/4, 7π/4, and in the interval following that
one, the transmitted phase will once again range over the set 0, π/2, π, 3π/2.
Thus, we see that for this choice of phase set corresponding to the informa-
tion phases, {∆θn}, the transmitted phases, {θn}, will alternatively range over
the sets 0, π/2, π, 3π/2 and π/4, 3π/4, 5π/4, 7π/4. Such a modulation scheme,
referred to as π/4-QPSK [3], has an advantage relative to conventional differen-
tially encoded QPSK in that the maximum change in phase from transmission
to transmission is 135 deg, which is halfway between the 90-deg maximum phase
change of OQPSK and 180-deg maximum phase change of QPSK.

In summary, on a linear additive white Gaussian noise (AWGN) channel with
ideal coherent detection, all three types of differentially encoded QPSK, i.e., con-
ventional (nonoffset), offset, and π/4 perform identically. The differences among
the three types on a linear AWGN channel occur when the carrier demodulation
phase reference is not perfect, which corresponds to nonideal coherent detection.

6 Since the introduction of a 180-deg phase shift to a binary phase sequence is equivalent to a
reversal of the polarity of the binary data bits, a binary differential encoder is characterized
by an = an−1bn and the corresponding binary differential decoder is characterized by bn =
an−1an where {bn} are now the information bits and {an} are the actual transmitted bits
on each channel.
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2.5 Power Spectral Density Considerations
The power spectral densities (PSD) of QPSK, OQPSK, and the differentially

encoded versions of these are all identical and are given by

S (f) = PTs

(
sinπfTs
πfTs

)2

(2.5 1)

We see that the asymptotic (large f) rate of rolloff of the PSD varies as f−2, and
a first null (width of the main lobe) occurs at f = 1/Ts = 1/2Tb. Furthermore,
when compared with BPSK, QPSK is exactly twice as bandwidth efficient.

2.6 Ideal Receiver Performance
Based upon the decision variables in (2.2-7) the receiver for QPSK or

OQPSK makes its I and Q data decisions from

âIn = sgn yIn

âQn = sgn yQn


 (2.6 1)

which results in an average bit-error probability (BEP) given by

Pb (E) =
1
2

erfc

(√
Eb
N0

)
, Eb = PTb (2.6 2)

and is identical to that of BPSK. Thus, we conclude that ideally BPSK, QPSK,
and OQPSK have the identical BEP performance although the latter two occupy
half the bandwidth.

2.7 Performance in the Presence of Nonideal Transmitters

2.7.1 Modulator Imbalance and Amplifier Nonlinearity

The deleterious effect on receiver performance of modulator phase and ampli-
tude imbalance and amplifier nonlinearity has been studied by several researchers
[3–10]. With regard to modulator imbalances, the primary source of degradation
comes about because of the effect of the imbalance on the steady-state lock point
of the carrier tracking loop, which has a direct impact on the determination of
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accurate average BEP performance. Here, we summarize some of these results
for QPSK and OQPSK, starting with modulator imbalance acting alone and
then later on in combination with amplifier nonlinearity. We begin our discus-
sion with a description of an imbalance model associated with a modulator for
generating these signals.

2.7.1.1 Modulator Imbalance Model. QPSK can be implemented with
two balanced modulators, one on each of the I and Q channels, as illustrated
in Fig. 2-3. Each of these modulators is composed of two AM modulators with
inputs equal to the input nonreturn-to-zero (NRZ) data stream and its inverse
(bit polarities inverted). The difference of the outputs of the two AM modula-
tors serves as the BPSK transmitted signal on each channel. A mathematical
description of the I and Q channel signals in the presence of amplitude and phase
imbalances introduced by the AM modulators is7

sI (t) =
√
P

2
mI (t)

[
cos (2πfct+ θcI) + ΓI cos (2πfct+ θcI + ∆θcI)

]

+
√
P

2
[
cos (2πfct+ θcI)− ΓI cos (2πfct+ θcI + ∆θcI)

]
(2.7 1a)

sQ (t) =
√
P

2
mQ (t)

[
sin (2πfct+ θcQ) + ΓQ sin (2πfct+ θcQ + ∆θcQ)

]

+
√
P

2
[
sin (2πfct+ θcQ)− ΓQ sin (2πfct+ θcQ + ∆θcQ)

]
(2.7 1b)

s (t) = sI (t) + sQ (t)

where θcI , θcQ are the local oscillator carrier phases associated with the I and
Q balanced modulators, ΓI ,ΓQ (both assumed to be less than unity) are the
relative amplitude imbalances of these same modulators, and ∆θcI ,∆θcQ are
the phase imbalances between the two AM modulators in each of the I and Q

7 To be consistent with the usage in Ref. 8, we define the transmitted signal as the sum of
the I and Q signals, i.e., s (t) = sI (t) + sQ (t) rather than their difference as in the more
traditional usage of (2.2-5). This minor switch in notation is of no consequence to the results
that follow.
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Fig. 2-3.  Balanced QPSK modulator implementation.

+

+

balanced modulators, respectively. Note that by virtue of the fact that we have
introduced separate notation for the I and Q local oscillator phases, i.e., θcI and
θcQ, we are also allowing for other than a perfect 90-deg phase shift between I and
Q channels. Alternatively, the model includes the possibility of an interchannel
phase imbalance, ∆θc = θcI − θcQ. Since we will be interested only in the
difference ∆θc, without loss of generality we shall assume θcQ = 0, in which
case θcI = ∆θc. Finally, note that if ΓI = ΓQ = 1, ∆θcI = ∆θcQ = 0, and
θcI = θcQ = θc, then we obtain balanced QPSK as characterized by (2.2-5).

As shown in Ref. 8, the transmitted signal of (2.7-1a) and (2.7-1b) can, after
some trigonometric manipulation, be written in the form

s(t) =
√
P

{[
αI + βImI(t)− γQ

(
1−mQ(t)

)]
cos 2πfct

+
[
αQ + βQmQ(t) + δI − γImI(t)

]
sin 2πfct

}
(2.7 2)

where
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αI =
(1− ΓI cos ∆θcI) cos ∆θc + ΓI sin ∆θcI sin ∆θc

2
,

αQ =
1− ΓQ cos ∆θcQ

2

βI =
(1 + ΓI cos ∆θcI) cos ∆θc − ΓI sin ∆θcI sin ∆θc

2
,

βQ =
1 + ΓQ cos ∆θcQ

2

γI =
(1 + ΓI cos ∆θcI) sin ∆θc + ΓI sin ∆θcI cos ∆θc

2
,

γQ =
ΓQ sin ∆θcQ

2

δI =
− (1− ΓI cos ∆θcI) sin ∆θc + ΓI sin ∆θcI cos ∆θc

2




(2.7 3)

The form of the transmitted signal in (2.7-2) clearly identifies the crosstalk in-
troduced by the modulator imbalances, i.e., the dependence of the I channel
signal on the Q channel modulation and vice versa, as well as the lack of perfect
quadrature between I and Q channels. Note the presence of a spurious carrier
component in (2.7-3), i.e., a discrete (unmodulated) carrier component that is
not present in the balanced case. Note that for perfect quadrature between the
I and Q channels, i.e., ∆θc = 0, we have γI = δI = (1/2)ΓI sin ∆θcI , and (2.7-2)
becomes the symmetric form

s (t) =
√
P

{[
αI + βImI (t)− γQ

(
1−mQ (t)

)]
cos 2πfct

+
[
αQ + βQmQ (t) + γI

(
1−mI (t)

)]
sin 2πfct

}
(2.7 4)

which corresponds to the case of modulator imbalance alone. If now the phase
imbalance is removed, i.e., ∆θcI = ∆θcQ = 0, then γI = γQ = 0, and the
crosstalk in the transmitted signal disappears, i.e., modulator amplitude im-
balance alone does not cause crosstalk. It is important to note, however, that
the lack of crosstalk in the transmitted signal does not guarantee the absence
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of crosstalk at the receiver, which affects the system error probability perfor-
mance. Finally, note that for the perfectly balanced case, βI = βQ = 1 and
αI = αI = 0, γI = γQ = 0, and (2.7-4) results in (2.2-5) with the exception of
the minus sign discussed in Footnote 7.

2.7.1.2 Effect on Carrier Tracking Loop Steady-State Lock Point.
When a Costas-type loop is used to track a QPSK signal, it forms its error signal
from IQ

(
I2 −Q2

)
, where the letters I and Q now refer to signals that are synony-

mous with the outputs of the inphase and quadrature integrate-and-dump (I&D)
filters, yIn and yQn, shown in Fig. 2-2(a). In the presence of modulator imbalance
and imperfect I and Q quadrature, the evaluation of the steady-state lock point
of the loop was considered in Ref. 8 and, in the most general case, was determined
numerically. For the special case of identically imbalanced I and Q modulators
and no quadrature imperfection, i.e., ΓI = ΓQ = Γ, ∆θcI = ∆θcQ = ∆θu and
∆θc = 0, a closed-form result for the steady-state lock point is possible and is
given by

φ0 = −1
4

tan−1 6Γ2 sin 2∆θu + Γ4 sin 4∆θu
1 + 6Γ2 cos 2∆θu + Γ4 cos 4∆θu

(2.7 5)

Note that for perfect modulator amplitude balance (Γ = 1), we obtain φ0 =
−∆θu/2, as expected. This shift in the lock point exists independently of the
loop SNR and thus can be referred to as an irreducible carrier phase error.

2.7.1.3 Effect on Average BEP. Assuming that the phase error is constant
over the bit time (equivalently, the loop bandwidth is small compared to the data
rate) and that the 90-deg phase ambiguity associated with the QPSK Costas loop
can be perfectly resolved (e.g., by differential encoding), the average BEP can
be evaluated by averaging the conditional (on the phase error, φ) BEP over the
probability density function (PDF) of the phase error, i.e.,

PbI (E) =
∫ φ0−π/4

φ0−π/4
PbI (E;φ) pφ (φ) dφ

PbQ (E) =
∫ φ0−π/4

φ0−π/4
PbQ (E;φ) pφ (φ) dφ




(2.7 6)

where

pφ (φ) = 4
exp

(
ρ4φ cos

(
4 (φ− φ0)

))
2πI0 (ρ4φ)

, |φ− φ0| ≤
π

4
(2.7 7)
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is the usual Tikhonov model assumed for the phase error PDF [11] with φ0

determined from (2.7-5). The parameter ρ4φ is the loop SNR of the four times
phase error process (which is what the loop tracks) and I0 (·) is the modified
first-order Bessel function of the first kind. Based on the hard decisions made on
yIn and yQn in Fig. 2-2(a), the conditional BEPs on the I and Q channels in the
presence of imbalance are given, respectively, in Ref. 8, Eqs. (11a) and (11b):

PbI (E;φ) =
1
8
erfc

(√
Eb
N0

[
cos (φ+ ∆θc) + sinφ

])

+
1
8
erfc

(√
Eb
N0

[
cos (φ+ ∆θc)− ΓQ sin (φ+ ∆θcQ)

])

+
1
8
erfc

(√
Eb
N0

[
ΓI cos (φ+ ∆θcI + ∆θc)− sinφ

])

+
1
8
erfc

(√
Eb
N0

[
ΓI cos (φ+ ∆θcI + ∆θc) + ΓQ sin (φ+ ∆θcQ)

])

(2.7 8a)

and

PbQ (E;φ) =
1
8
erfc

(√
Eb
N0

[
cosφ− sin (φ+ ∆θc)

])

+
1
8
erfc

(√
Eb
N0

[
cosφ+ ΓI sin (φ+ ∆θcI + ∆θc)

])

+
1
8
erfc

(√
Eb
N0

[
ΓQ cos (φ+ ∆θcQ) + sin (φ+ ∆θc)

])

+
1
8
erfc

(√
Eb
N0

[
ΓQ cos (φ+ ∆θcQ)− ΓI sin (φ+ ∆θcI + ∆θc)

])

(2.7 8b)
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Substituting (2.7-7) together with (2.7-8a) and (2.7-8b) in (2.7-6) gives the de-
sired average BEP of the I and Q channels for any degree of modulator imbalance.
Note that, in general, the error probability performances of the I and Q channels
are not identical.

For a maximum amplitude imbalance (ΓI or ΓQ) of 0.2 dB, a maximum
phase imbalance (∆θcI or ∆θcQ) of +2 deg, and a maximum I-Q quadra-
ture imbalance (∆θc) of +2 deg (the values recommended by the CCSDS),
Figs. 2-4(a) and 2-4(b) plot the I and Q average BEPs as computed from (2.7-6)
for the best and worst combinations of imbalance conditions. In these plots, the
loop SNR, ρ4φ, is assumed to have infinite value (“perfect” carrier synchroniza-
tion), and, consequently, the degradation corresponds only to the shift in the
lock point. The case of perfectly balanced QPSK is also included in these plots
for comparison purposes. We observe that the best imbalance condition gives
a performance virtually identical to that of balanced QPSK, whereas the worst
imbalance condition results in an Eb/N0 loss of 0.33 dB at an average BEP of
10−2.

The extension of the above results to the case of OQPSK is presented in
Ref. 9. The same modulator imbalance model as that illustrated in Fig. 2-3
is considered, with the exception that the Q channel data stream is now offset
with respect to the I channel data stream, requiring a half-symbol delay between
the NRZ data source 2 and AM modulator. Also, the amplitude imbalance,
Γ, between the I and Q channels, is now explicitly included as an additional
independent parameter. Therefore, analogous to (2.7-1b), the Q component
of the transmitted OQPSK signal becomes [the I component is still given by
(2.7-1a)]

sQ (t) = Γ
√
P

2
mQ

(
t− Ts

2

) [
sin (2πfct+ θcQ) + ΓQ sin (2πfct+ θcQ + ∆θcQ)

]

+ Γ
√
P

2
[
sin (2πfct+ θcQ)− ΓQ sin (2πfct+ θcQ + ∆θcQ)

]
(2.7 9)

Using similar trigonometric manipulations for arriving at (2.7-2), the transmitted
signal (sI (t) + sQ (t)) can now be written as

s(t) =
√
P

{[
αI + βImI(t)− γQ

(
1−mQ

(
t− Ts

2

))]
cos 2πfct

+

[
αQ + βQmQ

(
t− Ts

2

)
+ δI − γImI(t)

]
sin 2πfct

}
(2.7 10)
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where the only changes in the parameters of (2.7-3) are that αQ, βQ, and γQ are
now each multiplied by the I-Q amplitude imbalance parameter, Γ.

The carrier-tracking loop assumed in Ref. 9 is a slightly modified version of
that used for QPSK, in which a half-symbol delay is added to its I arm so that the
symbols on both arms are aligned in forming the IQ

(
Q2 − I2

)
error signal. This

loop as well as the optimum (based on maximum a posteriori (MAP) estimation)
OQPSK loop, which exhibits only a 180-deg phase ambiguity, are discussed in
Ref. 12. The evaluation of the steady-state lock point of the loop was considered
in Ref. 9 and was determined numerically. The average BEP is still determined
from (2.7-6) (again assuming perfect 90-deg phase ambiguity resolution), but the
conditional I and Q BEPs are now specified by

PbI (E;φ) =

1
16

erfc

(√
Eb
N0

[
cos (φ+ ∆θc) + sinφ

])

+
1
16

erfc

(√
Eb
N0

[
cos (φ+ ∆θc)− ΓΓQ sin (φ+ ∆θcQ)

])

+
1
16

erfc

(√
Eb
N0

[
ΓI cos (φ+ ∆θcI + ∆θc)− Γ sinφ

])

+
1
16

erfc

(√
Eb
N0

[
ΓI cos (φ+ ∆θcI + ∆θc) + ΓΓQ sin (φ+ ∆θcQ)

])

+
1
8

erfc

(√
Eb
N0

[
cos (φ+ ∆θc)−

ΓΓQ
2

sin (φ+ ∆θcQ) +
Γ
2

sinφ
])

+
1
8

erfc

(√
Eb
N0

[
ΓI cos (φ+ ∆θcI + ∆θc) +

ΓΓQ
2

sin (φ+ ∆θcQ)− Γ
2

sinφ
])

(2.7 11a)

and
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PbQ (E;φ) =

1
16

erfc

(√
Eb
N0

[
Γ cosφ− sin (φ+ ∆θc)

])

+
1
16

erfc

(√
Eb
N0

[
Γ cosφ+ ΓI sin (φ+ ∆θcI + ∆θc)

])

+
1
16

erfc

(√
Eb
N0

[
ΓΓQ cos (φ+ ∆θcQ) + sin (φ+ ∆θc)

])

+
1
16

erfc

(√
Eb
N0

[
ΓΓQ cos (φ+ ∆θcQ)− ΓI sin (φ+ ∆θcI + ∆θc)

])

+
1
8

erfc

(√
Eb
N0

[
Γ cosφ+

ΓI
2

sin (φ+ ∆θcI + ∆θc) +
1
2

sin (φ+ ∆θc)
])

+
1
8

erfc

(√
Eb
N0

[
ΓΓQ cos (φ+ ∆θcQ)− ΓI

2
sin (φ+ ∆θcI + ∆θc)

+
1
2

sin (φ+ ∆θc)
])

(2.7 11b)

Substituting (2.7-7) together with (2.7-11a) and (2.7-11b) in (2.7-6) gives the
desired average BEP of the I and Q channels for any degree of modulator im-
balance. Note again that, in general, the error probability performances of the
I and Q channels are not identical.

For the same maximum amplitude imbalance, maximum phase imbalance,
and maximum I-Q quadrature imbalances as for the QPSK case and in addi-
tion an I-Q amplitude imbalance (Γ) of −0.2 dB (corresponding to an actual
Q-channel power that is 0.4 dB less than that in the I channel), Figs. 2-5(a)
and 2-5(b) plot the I and Q average BEPs as computed from (2.7-6) for the best
and worst combinations of imbalance conditions. These results also include the
effect of a finite loop SNR of the φ process, ρφ = ρ4φ/16, which was chosen equal
to 22 dB and held constant along the curves. The case of perfectly balanced
QPSK is included in these plots for comparison purposes. The curve labeled
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balanced QPSK (ideal) refers to the case where the loop SNR is assumed infinite,
as was the case shown in Figs. 2-4(a) and 2-4(b). Finally, simulation points that
agree with the analytical results are also included in Figs. 2-5(a) and 2-5(b).
We observe from these figures that the worst imbalance condition results in an
Eb/N0 loss of 0.61 dB for the I channel and 1.08 dB for the Q-channel at an
average BEP of 10−4, the larger loss for the Q channel coming as a result of
its 0.4-dB power deficiency caused by the I-Q amplitude imbalance. When the
I and Q results are averaged, the overall Eb/N0 degradation becomes 0.86 dB. If
perfect carrier synchronization had been assumed, then as shown in Ref. 9, these
worst-case losses would be reduced to 0.34 dB for the I channel and 0.75 dB for
the Q channel, which translates to a 0.58-dB average performance degradation.

Aside from intrachannel and interchannel amplitude and phase imbalances,
the inclusion of a fully saturated RF amplifier modeled by a bandpass hard lim-
iter in the analytical model causes additional degradation in system performance.
The performance of OQPSK on such a nonlinear channel was studied in Ref. 10,
using the same modulator imbalance model as previously discussed above. The
results are summarized as follows.

The transmitter is the same as that illustrated in Fig. 2-3 (with the inclusion
of the half-symbol delay in the Q channel as previously discussed), the output
of which is now passed through a nonlinear amplifier composed of the cascade
of a hard limiter and a bandpass filter (a bandpass hard limiter [13]). The hard
limiter clips its input signal at levels ±

√
2P1 (π/4), and the bandpass (zonal)

filter removes all the harmonics except for the one at the carrier frequency. The
resulting bandpass hard-limited OQPSK signal is a constant envelope signal that
has the form

ŝ (t) =
√

2P1 cos
(
2πfct+ θd (t)

)
(2.7 12)

where P1 = P
(
β2
I + γ2

I

)
with βI , γI as defined in (2.7-3) and8

θd (t)= tan−1 γI
βI
−tan−1




GmQ

(
t− Ts

2

)
cos ∆θ +A cosψ

mI (t) +GmQ

(
t− Ts

2

)
sin ∆θ +A sinψ


 (2.7 13)

with

8 The arctangents in (2.7-13) are taken in their principal value sense. Thus, adding π to some
of these values is required to place θd (t) into its appropriate quadrant.
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G =

√
β2
Q + γ2

Q

β2
I + γ2

I

A =

√
(αI − γQ)2 + (αQ + δI)

2

β2
I + γ2

I

∆θ = tan−1 γQ
βQ
− tan−1 γI

βI

ψ = tan−1 αI − γQ
αQ + δI

− tan−1 γI
βI




(2.7 14)

Since in any half symbol interval, mI (t) and mQ (t− [Ts/2]) only take on val-
ues ±1, then in that same interval, θd (t) takes on only one of four equiprobable
values, namely, θ1,1, θ−1,1, θ1,−1, θ−1,−1, where the subscripts correspond, respec-
tively, to the values of the above two modulations.

The average BEP is again computed from (2.7-6) together with (2.7-7), where
the conditional BEPs are now given by [10, Eqs. (10a) and (10b)]

PbI (E;φ) =
1
2
erfc


√

2E′b
N0

cos

(
θ
(1)
d − θ

(2)
d

2

)∣∣∣∣∣cos

(
θ
(1)
d + θ

(2)
d

2
+ φ

)∣∣∣∣∣


(2.7 15)

PbQ (E;φ) =
1
2
erfc


√

2E′b
N0

cos

(
θ
(2)
d − θ

(3)
d

2

)∣∣∣∣∣cos

(
θ
(2)
d + θ

(3)
d

2
+ φ

)∣∣∣∣∣



where θ(j)
d is the value of the symbol phase θd (t) in the interval (j − 1)Ts/2 ≤

t ≤ jTs/2, the overbar denotes the statistical average over these symbol phases,
and E′b = P1T/2Ts =

(
β2
I + γ2

I

)
PTs/2 =

(
β2
I + γ2

I

)
Eb is the actual I-channel

bit energy. Using now the steady-state lock point (irreducible carrier phase er-
ror) found numerically in Ref. 10 for this scenario, the average overall and I and
Q BEPs are illustrated in Figs. 2-6(a), 2-6(b), and 2-6(c) using parameters iden-
tical to those used in arriving at Figs. 2-5(a) and 2-5(b). The final result is that,
in the presence of modulator imbalance, the nonlinear amplifier tends to produce
a more balanced signal constellation, and thus, the relative BEP performance
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Fig. 2-6.  Bit-error performance of nonlinear OQPSK links with imperfect 

carrier synchronization (i.e., with a carrier-tracking loop SNR fixed at    

22 dB): (a) overall channel, (b) in-phase channel, and (c) quadrature-phase 

channel.
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between the I and Q channels is itself more balanced. Furthermore, the average
BEPs themselves are much closer to that of a perfectly balanced OQPSK system
than those found for the linear channel.

2.7.2 Data Imbalance

The presence of data imbalance (positive and negative bits have different
a priori probabilities of occurrence) in the transmitted waveform results in the
addition of a discrete spectral component at dc to the continuous PSD component
described by (2.5-1). Specifically, if p denotes the probability of a mark (+1),
then the total PSD is given by [11, Eq. (1-19)]

S (f) = PTs

[
1
Ts

(1− 2p)2 δ (f) + 4p (1− p)
sin2 πfTs

(πfTs)
2

]
(2.7 16)

Clearly, for the balanced data case, i.e., p = 1/2, (2.7-16) reduces to (2.5-1).
Since the total power in the transmitted signal is now split between an unmod-
ulated tone at the carrier frequency and a data-bearing component, the carrier
tracking process at the receiver (which is designed to act only on the latter)
becomes affected even with perfect modulator balance. The degrading effects of
a residual carrier on the Costas loop performance for binary PSK are discussed
in Ref. 14. The extension to QPSK and OQPSK modulations is straightforward
and not pursued here.

Further on in this monograph in our discussion of simulation models and
performance, we shall talk about various types of filtered QPSK (which would
then no longer be constant envelope). At that time, we shall observe that the
combination of data imbalance and filtering produces additional discrete spectral
harmonics occurring at integer multiples of the symbol rate.

2.8 Continuous Phase Modulation
Continuing with our discussion of strictly constant envelope modulations, we

now turn our attention to the class of schemes referred to as continuous phase
frequency modulation (CPFM) or more simply continuous phase modulation
(CPM). The properties and performance (bandwidth/power) characteristics of
this class of modulations are sufficiently voluminous to fill a textbook of their
own [15]. Thus, for the sake of brevity, we shall only investigate certain special
cases of CPM that have gained popularity in the literature and have also been
put to practice.
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CPM schemes are classified as being full response or partial response, de-
pending, respectively, on whether the modulating frequency pulse is of a single
bit duration or longer. Within the class of full response CPMs, the subclass
of schemes having modulation index 0.5 but arbitrary frequency pulse shape
results in a form of generalized MSK [16].9 Included as popular special cases
are MSK, originally invented by Doelz and Heald, as disclosed in a 1961 U.S.
patent [19], having a rectangular frequency pulse shape, and Amoroso’s sinu-
soidal frequency-shift-keying (SFSK) [20], possessing a sinusoidal (raised cosine)
frequency pulse shape. The subclass of full-response schemes with rectangular
frequency pulse but arbitrary modulation index is referred to as continuous phase
frequency-shift-keying (CPFSK) [21], which, for all practical purposes, served as
the precursor to what later became known as CPM itself. Within the class of
partial-response CPMs, undoubtedly the most popular scheme is that of Gaus-
sian minimum-shift-keying (GMSK) which, because of its excellent bandwidth
efficiency, has been adopted as a European standard for personal communication
systems (PCSs). In simple terms, GMSK is a partial-response CPM scheme ob-
tained by filtering the rectangular frequency pulses characteristic of MSK with
a filter having a Gaussian impulse response prior to frequency modulation of the
carrier.

In view of the above considerations, in what follows, we shall focus our CPM
discussion only on MSK, SFSK, and GMSK, in each case presenting results for
their spectral and power efficiency behaviors. Various representations of the
transmitter, including the all-important equivalent I-Q one, will be discussed as
well as receiver performance, both for ideal and nonideal (modulator imbalance)
conditions.

2.8.1 Full Response—MSK and SFSK

While the primary intent of this section of the monograph is to focus specif-
ically on the properties and performance of MSK and SFSK in the form they
are most commonly known, the reader should bear in mind that many of these
very same characteristics, e.g., transmitter/receiver implementations, equivalent
I-Q signal representations, spectral and error probability analysis, apply equally
well to generalized MSK. Whenever convenient, we shall draw attention to these
analogies so as to alert the reader to the generality of our discussions. We begin
the mathematical treatment by portraying MSK as a special case of the more
general CPM signal, whose characterization is given in the next section.

9 Several other authors [17,18] coined the phrase “generalized MSK” to represent generaliza-
tions of MSK other than by pulse shaping.
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2.8.1.1 Continuous Phase Frequency Modulation Representation. A
binary single-mode (one modulation index for all transmission intervals) CPM
signal is a constant envelope waveform that has the generic form (see the imple-
mentation in Fig. 2-7)

s(t) =
√

2Eb
Tb

cos
(
2πfct+ φ (t,α) + φ0

)
, nTb ≤ t ≤ (n+ 1)Tb (2.8 1)

where, as before, Eb and Tb respectively denote the energy and duration of a bit
(P = Eb/Tb is the signal power), and fc is the carrier frequency. In addition,
φ (t,α) is the phase modulation process that is expressable in the form

φ (t,α) = 2π
∑
i≤n

αihq (t− iTb) (2.8 2)

where α = (· · · , α−2, α−1, α0, α1, α2, · · ·) is an independent, identically dis-
tributed (i.i.d.) binary data sequence, with each element taking on equiprobable
values ±1, h = 2∆fTb is the modulation index (∆f is the peak frequency devi-
ation of the carrier), and q(t) is the normalized phase-smoothing response that
defines how the underlying phase, 2παih, evolves with time during the associated
bit interval. Without loss of generality, the arbitrary phase constant, φ0, can be
set to zero.

For our discussion here it is convenient to identify the derivative of q(t),
namely,

g(t) =
dq(t)
dt

(2.8 3)

Fig. 2-7.  CPM transmitter.
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which represents the instantaneous frequency pulse (relative to the nominal car-
rier frequency, fc) in the zeroth signaling interval. In view of (2.8-3), the phase
smoothing response is given by

q(t) =
∫ t

−∞
g (τ) dτ (2.8 4)

which, in general, extends over infinite time. For full response CPM schemes, as
will be the case of interest here, q(t) satisfies the following:

q(t) =




0, t ≤ 0

1
2
, t ≥ Tb

(2.8 5)

and, thus, the frequency pulse, g(t), is nonzero only over the bit interval,
0 ≤ t ≤ Tb. In view of (2.8-5), we see that the ith data symbol, αi, contributes
a phase change of παih rad to the total phase for all time after Tb seconds of its
introduction, and, therefore, this fixed phase contribution extends over all fu-
ture symbol intervals. Because of this overlap of the phase smoothing responses,
the total phase in any signaling interval is a function of the present data sym-
bol as well as all of the past symbols, and accounts for the memory associated
with this form of modulation. Consequently, in general, optimum detection of
CPM schemes must be performed by a maximum-likelihood sequence estimator
(MLSE) form of receiver [1] as opposed to bit-by-bit detection, which is optimum
for memoryless modulations such as conventional binary FSK with discontinuous
phase.

As previously mentioned, MSK is a full-response CPM scheme with a modu-
lation index h = 0.5 and a rectangular frequency pulse mathematically described
by

g(t) =




1
2Tb

, 0 ≤ t ≤ Tb

0, otherwise

(2.8 6)

For SFSK, one of the generalized MSK schemes mentioned in the introduction,
g(t), would be a raised cosine pulse given by

g(t) =




1
2Tb

[
1− cos

(
2πt
Tb

)]
, 0 ≤ t ≤ Tb

0, otherwise

(2.8 7)
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The associated phase pulses defined by (2.8-4) are

q(t) =




t

2Tb
, 0 ≤ t ≤ Tb

1
2
, t ≥ Tb

(2.8 8)

for MSK and

q(t) =




1
2Tb

[
t− sin 2πt/Tb

2π/Tb

]
, 0 ≤ t ≤ Tb

1
2
, t ≥ Tb

(2.8 9)

for SFSK.
Finally, substituting h = 0.5 and g (t) of (2.8-6) in (2.8-1) combined with

(2.8-2) gives the CPM representations of MSK and SFSK, respectively, as

sMSK(t) =
√

2Eb
Tb

cos


2πfct+

π

2Tb

∑
i≤n

αi (t− iTb)


 , nTb ≤ t ≤ (n+ 1)Tb

(2.8 10)

and

sSFSK(t) =
√

2Eb
Tb

cos


2πfct+

π

2Tb

∑
i≤n

αi

[
t− iTb −

sin 2π (t− iTb) /Tb
2π/Tb

]
 ,

nTb ≤ t ≤ (n+ 1)Tb (2.8 11)

both of which are implemented as in Fig. 2-7, using g (t) of (2.8-6) or (2.8-7) as
appropriate.

Associated with MSK (or SFSK) is a phase trellis that illustrates the evo-
lution of the phase process with time, corresponding to all possible transmitted
sequences. For MSK, the phase variation with time is linear [see (2.8-10)], and,
thus, paths in the phase trellis are straight lines with a slope of ±π/2Tb. Fig-
ure 2-8 is an illustration of the MSK phase trellis where the branches are labeled
with the data bits that produce the corresponding phase transition. Note that
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Fig. 2-8.  Phase trellis (time-varying) for conventional MSK. Phase 

states (mod 2      ) are (0,     ) for n even and (    /2, 3      /2) for n odd.
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the change in phase over a single bit time is either π/2 or −π/2, depending on the
polarity of the data bit, αi, corresponding to that bit time. Also note that the
trellis is time-varying in that the phase states (modulo 2π) alternate between 0
and π at even multiples of the bit time and π/2 and 3π/2 at odd multiples of the
bit time. For SFSK, the phase trellis would appear as in Fig. 2-8 with, however,
a sinusoidal variation in phase superimposed over the straight line paths. Here
again the change in phase over a single bit time would be either π/2 or −π/2,
depending on the polarity of the data bit, αi, corresponding to that bit time.

2.8.1.2 Equivalent I-Q Representation of MSK. Although, as stated
above, CPM schemes, because of their inherent memory, require a memory-type
of detection, e.g., MLSE, full-response modulations with h = 0.5 such as MSK
and SFSK can in fact be detected using a memoryless I-Q form of receiver. The
reason for this is that for these modulations the transmitter can be implemented
in an I-Q form analogous to that of OQPSK. To see this mathematically, we first
rewrite the excess phase in the nth transmission interval of the MSK signal in
(2.8-10) as
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φ (t,α) =
π

2Tb

∑
i≤n

αi (t− iTb) = αn
π

2Tb
(t− nTb) +

π

2

∑
i≤n−1

αi = αn
π

2Tb
t+ xn,

nTb ≤ t ≤ (n+ 1)Tb (2.8 12)

where (π/2)
∑

i≤n−1 αi is the accumulated phase at the beginning of the nth
transmission interval that is equal to an odd integer (positive or negative) mul-
tiple of π/2 when n is odd and an even integer (positive or negative) multiple
of π/2 when n is even, and xn is a phase constant required to keep the phase
continuous at the data transition points t = nTb and t = (n+ 1)Tb. Note also
that xn represents the y-intercept (when reduced modulo 2π) of the path in the
phase trellis that represents φ (t,α). In the previous transmission interval, the
excess phase is given by

φ (t,α) = αn
π

2Tb

(
t− (n− 1)Tb

)
+
π

2

∑
i≤n−2

αi = αn−1
π

2Tb
t+ xn−1,

(n− 1)Tb ≤ t ≤ nTb (2.8 13)

For phase continuity at t = nTb, we require that

αn
π

2Tb
(nTb) + xn = αn−1

π

2Tb
(nTb) + xn−1 (2.8 14)

or equivalently

xn = xn−1 +
πn

2
(αn−1 − αn) (2.8 15)

Equation (2.8-15) is a recursive relation that allows xn to be determined in any
transmission interval given an initial condition, x0.

We observe that (αn−1 − αn) /2 is a ternary random variable (RV) taking on
values 0,+1,−1, with probabilities 1/2, 1/4, 1/4, respectively. Therefore, from
(2.8-15), when αn−1 = αn, xn = xn−1, whereas when αn−1 �= αn, xn = xn−1

± πn. If we arbitrarily choose the initial condition x0 = 0, then we see that xn
takes on values of 0 or π (when reduced modulo 2π). Using this fact in (2.8-12)
and applying simple trigonometry to (2.8-10), we obtain
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sMSK(t) =
√

2Eb
Tb

[
cosφ (t,α) cos 2πfct− sinφ (t,α) sin 2πfct

]
,

nTb ≤ t ≤ (n+ 1)Tb (2.8 16)

where

cosφ (t,α) = cos
(
αn

π

2Tb
t+ xn

)
= an cos

π

2Tb
t, an = cosxn = ±1

sinφ (t,α) = sin
(
αn

π

2Tb
t+ xn

)
= αnan sin

π

2Tb
t = bn sin

π

2Tb
t,

bn = αn cosxn = ±1




(2.8 17)

Finally, substituting (2.8-17) in (2.8-16) gives the I-Q representation of MSK as

sMSK(t) =
√

2Eb
Tb

[
anC (t) cos 2πfct− bnS (t) sin 2πfct

]
, nTb ≤ t ≤ (n+ 1)Tb

(2.8 18)

where

C (t) = cos
πt

2Tb

S (t) = sin
πt

2Tb




(2.8 19)

are the effective I and Q pulse shapes, and {an} , {bn}, as defined in (2.8-17), are
the effective I and Q binary data sequences.

For SFSK, the representation of (2.8-18) would still be valid with an, bn as
defined in (2.8-17), but now the effective I and Q pulse shapes become

C (t) = cos
[
π

2Tb

(
t− sin 2πt/Tb

2π/Tb

)]

S (t) = sin
[
π

2Tb

(
t− sin 2πt/Tb

2π/Tb

)]




(2.8 20)
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To tie the representation of (2.8-18) back to that of FSK, we observe that

C (t) cos 2πfct =
1
2

cos
[
2π

(
fc +

1
4Tb

)
t

]

+
1
2

cos
[
2π

(
fc −

1
4Tb

)
t

]

S (t) sin 2πfct = − 1
2

cos
[
2π

(
fc +

1
4Tb

)
t

]

+
1
2

cos
[
2π

(
fc −

1
4Tb

)
t

]




(2.8 21)

Substituting (2.8-21) in (2.8-18) gives

sMSK(t) =
√

2Eb
Tb

[(
an + bn

2

)
cos

[
2π

(
fc +

1
4Tb

)
t

]

+
(
an − bn

2

)
cos

[
2π

(
fc −

1
4Tb

)
t

]]
, nTb ≤ t ≤ (n+ 1)Tb

(2.8 22)

Thus, when an = bn (αn = 1), we have

sMSK(t) =
√

2Eb
Tb

cos
[
2π

(
fc +

1
4Tb

)
t

]
(2.8 23)

whereas when an �= bn (αn = −1) we have

sMSK(t) =
√

2Eb
Tb

cos
[
2π

(
fc −

1
4Tb

)
t

]
(2.8 24)

which establishes the desired connection.
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Note from (2.8-19), that since C (t) and S (t) are offset from each other by a
time shift of Tb seconds, it might appear that sMSK (t) of (2.8-18) is in the form
of OQPSK with half-sinusoidal pulse shaping.10 To justify that this is indeed
the case, we must examine more carefully the effective I and Q data sequences
{an} , {bn} in so far as their relationship to the input data sequence {αi} and the
rate at which they can change. Since the input αn data bit can change every bit
time, it might appear that the effective I and Q data bits, an and bn, can also
change every bit time. To the contrary, it can be shown that as a result of the
phase continuity constraint of (2.8-15), an = cosxn can change only at the zero
crossings of C (t), whereas bn = αn cosxn can change only at the zero crossings
of S (t). Since the zero crossings of C (t) and S (t) are each spaced 2Tb seconds
apart, then an and bn are constant over 2Tb-second intervals (see Fig. 2-9 for an
illustrative example). Further noting that the continuous waveforms C (t) and
S (t) alternate in sign every 2Tb seconds, we can incorporate this sign change
into the I and Q data sequences themselves and deal with a fixed, positive, time-
limited pulse shape on each of the I and Q channels. Specifically, defining the
pulse shape

p(t) =


 sin

πt

2Tb
, 0 ≤ t ≤ 2Tb

0, otherwise
(2.8 25)

then the I-Q representation of MSK can be rewritten in the form

sMSK(t) =
√

2Eb
Tb

[
dc (t) cos 2πfct− ds (t) sin 2πfct

]
(2.8 26)

where

dc(t) =
∑
n

cnp
(
t− (2n− 1)Tb

)

ds(t) =
∑
n

dnp (t− 2nTb)




(2.8 27)

with

10 A similar statement can be made for SFSK, where the pulse shaping is now described by
(2.8-20).
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Fig. 2-9.  An example of the equivalent I and Q data sequences 

represented as rectangular pulse streams. Redrawn from [1].
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cn = (−1)n a2n−1

dn = (−1)n b2n


 (2.8 28)

To complete the analogy between MSK and sinusoidally pulse shaped
OQPSK, we must examine the manner in which the equivalent I and Q data
sequences needed in (2.8-28) are obtained from the input data sequence {αn}.
Without going into great mathematical detail, we can say that it can be shown
that the sequences {a2n−1} and {b2n} are the odd/even split of a sequence,
{vn}, which is the differentially encoded version of {αn}, i.e., vn = αnvn−1 (see
Fig. 2-10 for an illustrative example). Finally, the I-Q implementation of MSK
as described by (2.8-26)–(2.8-28) is illustrated in Fig. 2-11. As anticipated, we
observe that this figure resembles a transmitter for OQPSK except that here,
the pulse shaping is half-sinusoidal (of symbol duration Ts = 2Tb) rather than
rectangular; in addition, we see that a differential encoder is applied to the input
data sequence prior to splitting it into even and odd sequences, each at a rate
1/Ts. The interpretation of MSK as a special case of OQPSK with sinusoidal
pulse shaping along with trade-offs and comparisons between the two modula-
tions is further discussed in Refs. 22 and 23.

Before concluding this section, we note that the alternative representation of
MSK as in (2.8-22) can be also expressed in terms of the differentially encoded
bits, vn. In particular,

For n odd

sMSK(t) =
√

2Eb
Tb

[(
vn−1 + vn

2

)
cos

[
2π

(
fc +

1
4Tb

)
t

]

−
(
vn−1 − vn

2

)
cos

[
2π

(
fc −

1
4Tb

)
t

]]
,

nTb ≤ t ≤ (n+ 1)Tb (2.8 29a)

For n even

sMSK(t) =
√

2Eb
Tb

[(
vn−1 + vn

2

)
cos

[
2π

(
fc +

1
4Tb

)
t

]

+
(
vn−1 − vn

2

)
cos

[
2π

(
fc −

1
4Tb

)
t

]]
,

nTb ≤ t ≤ (n+ 1)Tb (2.8 29b)
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Fig. 2-10.  An example of the equivalence between differentially encoded 

inputs bits and effective I and Q bits. Redrawn from [1].
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Combining these two results we get

sMSK(t) =
√

2Eb
Tb

[(
vn−1 + vn

2

)
cos

[
2π

(
fc +

1
4Tb

)
t

]

+ (−1)n
(
vn−1 − vn

2

)
cos

[
2π

(
fc −

1
4Tb

)
t

]]
,

nTb ≤ t ≤ (n+ 1)Tb (2.8 30)
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Fig. 2-11.  CPM and equivalent I-Q implementations of MSK or SFSK.

2.8.1.3 Precoded MSK. The differential encoder that precedes the I-Q por-
tion of the transmitter in Fig. 2-11 requires a compensating differential decoder
at the receiver following I-Q demodulation and detection (see Fig. 2-12). Such a
combination of differential encoding at the transmitter and differential decoding
at the receiver results in a loss in power performance relative to that obtained
by conventional OQPSK (this will be discussed in more detail later on in the
chapter). It is possible to modify MSK to avoid such a loss by first recognizing
that the CPM form of modulator in Fig. 2-7 for implementing MSK can be pre-
ceded by the cascade of a differential encoder and a differential decoder without
affecting its output (Fig. 2-13). That is, the cascade of a differential encoder
and a differential decoder produces unity transmission—input = output. Thus,
comparing Fig. 2-13 with Fig. 2-11, we observe that precoding the CPM form of
MSK modulator with a differential decoder, resulting in what is referred to as
precoded MSK [1, Chap. 10] will be equivalent to the I-Q implementation of the
latter without the differential encoder at its input (see Fig. 2-14), and thus the
receiver for precoded MSK is that of Fig. 2-12 without the differential decoder
at its output. A similar precoding applied to SFSK would also allow for dispens-
ing with the differential decoder at the output of its I-Q receiver. Finally, we
note that both MSK (or SFSK) and its precoded version have identical spectral
characteristics and, consequently, for all practical purposes, the improvement in
power performance provided by the latter comes at no expense.
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Fig. 2-12.  An I-Q receiver implementation of MSK.
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2.8.1.4 Spectral Characteristics. The ability to express MSK in the offset
I-Q form of (2.8-18) allows for simple evaluation of its PSD. In particular, for
a generic offset I-Q modulation formed by impressing two lowpass modulations
(random pulse trains of rate 1/2Tb) of equal power and pulse shape on inphase
and quadrature carriers, i.e.,

s (t) = AmI (t) cos 2πfct−AmQ (t) sin 2πfct,

mI (t) =
∑
n

anp (t− 2nTb), mQ (t) =
∑
n

bnp
(
t− (2n− 1)Tb

)
(2.8 31)
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the PSD is given by [1, Chap. 2]

Ss (f) =
1
4
[
G (f − fc) +G (f + fc)

]
(2.8 32)

where G (f) is the equivalent baseband PSD and is related to the PSD, Sm (f),
of mI (t) or mQ (t) by

G (f) = 2A2Sm (f) , Sm (f) =
1

2Tb
|P (f)|2 (2.8 33)

with P (f) denoting the Fourier transform of the pulse shape p (t). For MSK,
we would have A =

√
2Eb/Tb and p (t) given by (2.8-25) with Fourier transform

P (f) =
4Tb
π
e−j2πfTb

cos 2πfTb
1− 16f2T 2

b

(2.8 34)

Substituting (2.8-34) in (2.8-33) gives the equivalent baseband PSD of MSK as
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G (f) =
32Eb
π2

cos2 2πfTb
(1− 16f2T 2

b )2
(2.8 35)

and the corresponding bandpass PSD as [1, Chap. 2]

Ss (f) =
8Eb
π2


 cos2 2π (f − fc)Tb(

1− 16 (f − fc)
2
T 2
b

)2 +
cos2 2π (f + fc)Tb(

1− 16 (f + fc)
2
T 2
b

)2


 (2.8 36)

We observe from (2.8-35) that the main lobe of the lowpass PSD has its
first null at f = 3/4Tb. Also, asymptotically for large f , the spectral sidelobes
roll off at a rate f−4. By comparison, the equivalent PSD of OQPSK wherein
A =

√
Eb/Tb and p (t) is a unit amplitude rectangular pulse of duration 2Tb, is

given by

G (f) = 4Eb
sin2 2πfTb
(2πfTb)

2 (2.8 37)

whose main lobe has its first null at f = 1/2Tb and whose spectral sidelobes
asymptotically roll off at a rate f−2. Thus, we observe that while MSK (or
precoded MSK) has a wider main lobe than OQPSK(or QPSK) by a factor
of 3/2, its spectral sidelobes roll off at a rate two orders of magnitude faster.
Figure 2-15 is an illustration of the normalized lowpass PSDs, G (f) /2Eb, of
MSK and OQPSK obtained from (2.8-35) and (2.8-37), respectively, as well as
that of SFSK, which is given by [1, Chap. 2]

G (f) =

2Eb

[
J0

(
1
4

)
A0 (f) + 2

∞∑
n=1

J2n

(
1
4

)
B2n (f) + 2

∞∑
n=1

J2n−1

(
1
4

)
B2n−1 (f)

]2

,

A (f) = 2
sin 2πfTb

2πfTb
,

A0 (f) =
1
2
A

(
f +

1
4Tb

)
+

1
2
A

(
f − 1

4Tb

)
=

4
π

cos 2πfTb
1− 16f2T 2

b

,
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A2n (f) =
1
2
A

(
f +

2n
Tb

)
+

1
2
A

(
f − 2n

Tb

)
,

A2n−1 (f) =
1
2
A

(
f +

2n− 1
Tb

)
− 1

2
A

(
f − 2n− 1

Tb

)
,

B2n (f) =
1
2
A2n

(
f +

1
4Tb

)
+

1
2
A2n

(
f − 1

4Tb

)
,

B2n−1 (f) = − 1
2
A2n−1

(
f +

1
4Tb

)
+

1
2
A2n−1

(
f − 1

4Tb

)
,

Jn (x) = nth order Bessel function of the first kind (2.8 38)

Fig. 2-15. A comparison of the equivalent 

baseband PSDs of MSK, OQPSK, and SFSK. 

Redrawn from [16].
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whose main lobe is wider than that of MSK, but whose spectral sidelobes asymp-
totically roll off four orders of magnitude faster, i.e., at a rate f−8. In fact, for
the class of generalized MSK schemes, we can conclude that the smoother we
make the shape of the frequency pulse, i.e., the more derivatives that go to zero
at the endpoints t = 0 and t = 2Tb, the wider will be the main lobe but the
faster the sidelobes will roll off.

Another way of interpreting the improved bandwidth efficiency that accom-
panies the equivalent I and Q pulse shaping is in terms of the fractional out-of-
band power, defined as the fraction of the total power that lies outside a given
bandwidth, i.e.,

η = 1−
∫ B/2
−B/2 G (f) df∫∞
−∞G (f) df

(2.8 39)

Figure 2-16 is a plot of the fractional out-of-band power (in dB) versus BTb
for MSK, OQPSK, and SFSK, using the appropriate expression for G (f) as
determined from (2.8-35), (2.8-37), and (2.8-38), respectively.

2.8.1.5 Other Transmitter Representations.

a. Cross-Coupled I-Q Transmitter. A variation of the I-Q transmitter dis-
cussed in Sec. 2.8.1.2 is illustrated in Fig. 2-17 [24,25,26]. An modulated car-
rier at frequency fc is multiplied by a lowpass sinusoidal signal at frequency
1/4Tb to produce a pair of unmodulated tones (carriers) at f2 = fc + 1/4Tb and
f1 = fc−1/4Tb. These tones are separately extracted by narrow bandpass filters
whose outputs, s1 (t) and s2 (t), are then summed and differenced to produce

zc (t) = s1 (t) + s2 (t) =
1
2

cos
[
2π

(
fc −

1
4Tb

)
t

]
+

1
2

cos
[
2π

(
fc +

1
4Tb

)
t

]

= cos
(
πt

2Tb

)
cos 2πfct

(2.8 40)

zs (t) = s1 (t)− s2 (t) =
1
2

cos
[
2π

(
fc −

1
4Tb

)
t

]
− 1

2
cos

[
2π

(
fc +

1
4Tb

)
t

]

= sin
(
πt

2Tb

)
sin 2πfct
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Fig. 2-16.  A comparison of the fractional out-of-

band power performance of MSK, OQPSK, and 

SFSK. Redrawn from [16].
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The signals zc (t) and zs (t) are respectively multiplied by I and Q data sequences
{αI} and {αQ}, each at a rate of 1/2Tb (and offset from each other by Tb s),
and then differenced to produce the MSK (actually precoded MSK) output. The
advantage of the implementation of Fig. 2-17 is that the signal coherence and
the frequency deviation ratio are largely unaffected by variations in the data rate
[25].

b. Rimoldi’s Representation. As previously stated, the conventional CPM
implementation of MSK produces a phase trellis that is symmetric about the
horizontal axis, but that is time varying in that the possible phase states (re-
duced modulo 2π) alternate between (0, π) and (π/2, 3π/2) every Tb seconds. To
remove this time-variation of the trellis, Rimoldi [27] demonstrated that CPM
with a rational modulation index could be decomposed into the cascade of a
memory encoder (finite-state machine) and a memoryless demodulator (signal
waveform mapper). For the specific case of MSK, Rimoldi’s transmitter is illus-
trated in Fig. 2-18. Imbalanced (0’s and 1’s ) binary bits, Un = (1− αn) /2, are
input to a memory one encoder. The current bit and the differentially encoded
version of the previous bit (the encoder state) are used to define, via a binary-
coded decimal (BCD) mapping, a pair of baseband signals (each chosen from a
set of four possible waveforms) to be modulated onto I and Q carriers for trans-
mission over the channel. Because of the imbalance of the data, the phase trellis
is tilted as shown in Fig. 2-19, but on the other hand, it is now time invariant,
i.e., the phase states (reduced modulo 2π) at all time instants (integer multiples
of the bit time) are (0, π). This transmitter implementation suggests the use
of a simple two-state trellis decoder, which will be discussed in the next section

Un
Vn

D

Fig. 2-18.  MSK transmitter based on Rimoldi decomposition of CPM.

+
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Re {si (t)}

Im {si (t)}

Choose

si (t)

where

i = Vn × 21 + Un × 20
2π fc tsin

cos 2π fc t sMSK (t)

s0(t) = 0 − j1, s1(t) = sin 
tπ tπ

Tb Tb

j cos

s2(t) = − s0(t), s3(t) − s1(t)
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Fig. 2-19. Tilted (time-invariant) phase trellis for Rimoldi's 

MSK representation.  Phase states (mod 2  ) are (0,   ) for 

all n.
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+1
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0 0 0 0

dealing with memory receiver structures. Also, later on in Chap. 4, we shall use
Rimoldi’s representation as the basis for developing bandwidth-efficient MSK-
type modulations with memory greater than one under the constraint of finite
decoding delay. Such modulations are not constrained to be constant envelope
(rather, the transmitted signals are constrained to have equal energy) and thus,
we defer our discussion of these schemes until that time.

Rimoldi’s representation can also be used to implement precoded MSK. The
appropriate transmitter is illustrated in Fig. 2-20.

2.8.1.6 Receiver Performance—Coherent Detection. Depending on the
particular form used to represent the MSK signal, e.g., CPM, parallel I-Q, serial,
etc., many different forms of receivers have been suggested in the literature for
performing coherent detection. These various forms fall into two classes: struc-
tures based on a memoryless transmitter representation and structures based on
a memory transmitter representation. As we shall see, all of these structures,
however, are, themselves, memoryless.

a. Structures Based on a Memoryless Transmitter Representation. The
most popular structure for coherent reception of MSK that is based on a memo-
ryless transmitter representation corresponds to a parallel I-Q representation and
has already been illustrated in Fig. 2-12. Here, the received signal plus noise is
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Fig. 2-20.  Precoded MSK transmitter based on Rimoldi decomposition of CPM.
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multiplied by the I and Q “carriers,”11 zc (t) and zs (t), respectively, followed
by integrate-and-dump (I&D) circuits of duration 2Tb seconds that are timed
to match the zero crossings of the I and Q symbol waveforms. The multiplier-
integrator combination constitutes a matched filter that, in the case of AWGN
and no intersymbol interference (ISI), results in optimum detection. Means for
producing the I and Q demodulation signals zc (t) and zs (t) will be discussed in
the section on synchronization techniques.

b. Structures Based on a Memory Transmitter Representation. As noted in
Sec. 2.8.1.5b, MSK (or precoded MSK) can be viewed as a cascade of a memory
one encoder and a memoryless modulator. As such, a receiver can be imple-
mented based on MLSE detection. For precoded MSK, the trellis diagram that
appropriately represents the transitions between states is given in Fig. 2-21. Each
branch of the trellis is labeled with the input bit (0 or 1) that causes a transition
and the corresponding waveform (complex) that is transmitted as a result of that
transition. The decision metrics based on a two-symbol observation that result
in the surviving paths illustrated in Fig. 2-21 are

∫ (n+1)Tb

nTb

r (t) s1 (t) dt+
∫ (n+2)Tb

(n+1)Tb

r (t) s0 (t) dt >
∫ (n+1)Tb

nTb

r (t) s3 (t) dt

+
∫ (n+2)Tb

(n+1)Tb

r (t) s1 (t) dt (2.8 41a)

11 The word “carrier” here is used to denote the combination (product) of the true carrier and
the symbol waveform (clock).
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and

∫ (n+1)Tb

nTb

r (t) s1 (t) dt+
∫ (n+2)Tb

(n+1)Tb

r (t) s2 (t) dt >
∫ (n+1)Tb

nTb

r (t) s3 (t) dt

+
∫ (n+2)Tb

(n+1)Tb

r (t) s3 (t) dt (2.8 41b)

Noting from Fig. 2-20 that s3 (t) = −s0 (t) and s2 (t) = −s1 (t), (2.8-41a) and
(2.8-41b) can be rewritten as

∫ (n+1)Tb

nTb

r (t) s0 (t) dt+
∫ (n+2)Tb

(n+1)Tb

r (t) s0 (t) dt > −
∫ (n+1)Tb

nTb

r (t) s1 (t) dt

+
∫ (n+2)Tb

(n+1)Tb

r (t) s1 (t) dt (2.8 42a)

and

∫ (n+1)Tb

nTb

r (t) s0 (t) dt+
∫ (n+2)Tb

(n+1)Tb

r (t) s0 (t) dt > −
∫ (n+1)Tb

nTb

r (t) s1 (t) dt

+
∫ (n+2)Tb

(n+1)Tb

r (t) s1 (t) dt (2.8 42b)
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Fig. 2-21. A complex baseband trellis. Surviving paths for deco-
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indicated by heavy lines.
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which are identical and suggest the memoryless receiver illustrated in Fig. 2-22
[27].12 Thus, we conclude that MSK (or precoded MSK) is a memory one type
of trellis-coded modulation (TCM) that can be decoded with a finite (one bit)
decoding delay, i.e., the decision on the nth bit can be made at the conclusion
of observing the received signal for the n+1st transmission interval.

Massey [28] suggests an alternative representation of MSK (or precoded
MSK) in the form of a single-input, two-output sequential transducer followed by
an RF selector switch (Fig. 2-23). Analogous to the representation in (2.8-30),
for precoded MSK, the sequential transducer implements the ternary sequences
α+
k = (1/2) (αk−1 + αk) and α−k = (−1)k (1/2) (αk−1 − αk). Note as before that

α+
k is nonzero only when α−k is zero and vice versa. The function of the RF

selector switch is to select one of the carriers for the signal to be transmitted in
each bit interval according to the rule:

s (t) =




r2 (t) if α+
k = 1

−r2 (t) if α+
k = −1

r1 (t) if α−k = 1

−r1 (t) if α−k = −1

, ri(t) =
√

2Eb
Tb

cos 2πfit, i = 1, 2 (2.8 43)

which represents four mutually exclusive possibilities. This form of modulator
has the practical advantage of not requiring addition of RF signals or RF filter-
ing since there is no actual mixing of the carriers with the modulating signals.

Massey shows that, analogous to what is shown in Fig. 2-21, the output of the
modulator can be represented by a trellis (Fig. 2-24), where again each branch
is labeled with the input bit and the signal transmitted. Note that the trellis is
time varying (the branch labels alternate with a period of two). In view of the
trellis representation in Fig. 2-24, the optimum receiver is again an MLSE that
has the identical structure as that in Fig. 2-22, where the complex demodulation
signals s0 (t− (n+ 1)Tb) and s1 (t− (n+ 1)Tb) are replaced by the real carriers
r1 (t) r1 (t) and r2 (t) of (2.8-43), the real part of the comparator (difference)
output is omitted, and the decision device outputs balanced +1,−1 data rather
than 0, 1 data.

Regardless of the particular receiver implementation employed, the BEP per-
formance of ideal coherent detection13 of MSK is given by

12 It can be shown that the surviving paths corresponding to being in state “0” at time n leads
to the identical decision metric as that in (2.8-41a) or (2.8-41b).

13 By “ideal coherent detection,” we mean a scenario wherein the local supplied carrier reference
is perfectly phase (and frequency) synchronous with the received signal carrier. Later on, we
explore the practical implications of imperfect carrier synchronization.
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Fig. 2-23.  Massey's precoded MSK transmitter.
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Fig. 2-24.  Transmitter output trellis diagram.

Pb (E) = erfc
√
Eb
N0

(
1− 1

2
erfc

√
Eb
N0

)
(2.8 44)

whereas the equivalent performance of precoded MSK is

Pb (E) =
1
2
erfc

√
Eb
N0

(2.8 45)

which is identical to that of ideal coherent detection of BPSK, QPSK, or OQPSK
[see (2.6-2)]. Comparing (2.8-44) with (2.8-45), we observe that the former can
be written in terms of the latter as
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Pb (E) |MSK = 2Pb (E)
∣∣∣∣precoded
MSK

(
1− Pb (E)

∣∣∣∣precoded
MSK

)
(2.8 46)

which reflects the penalty associated with the differential encoding/decoding
operation inherent in MSK but not in precoded MSK as previously discussed.
At a BEP of 10−5, this amounts to a penalty of approximately a factor of two
in error probability or equivalently a loss of 0.75 dB in Eb/N0.

2.8.1.7 Receiver Performance—Differentially Coherent Detection. In
addition to coherent detection, MSK can be differentially detected [29], as illus-
trated in Fig. 2-25. The MSK signal plus noise is multiplied by itself delayed
one bit and phase shifted 90 deg. The resulting product is passed through a low-
pass zonal filter that removes second harmonics of the carrier frequency terms.
Also assumed is that the carrier frequency and data rate are integer related, i.e.,
fcTb = k, with k integer. Assuming that the MSK signal input to the receiver is
in the form of (2.8-1) combined with (2.8-12), i.e.,

s(t) =
√

2Eb
Tb

cos
(

2πfct+ αn
π

2Tb
t+ xn

)
=

√
2Eb
Tb

cos Φ (t,α) ,

nTb ≤ t ≤ (n+ 1)Tb (2.8 47)

then the differential phase ∆Φ �= Φ (t,α)− Φ (t− Tb,α) is given by

∆Φ
∆=− (αn−1 − αn)

π

2

(
t

Tb
− k

)
+ αn−1

π

2
(2.8 48)

{     }αn

Fig. 2-25.  Differentially coherent MSK receiver.
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where we have made use of the phase continuity relation in (2.8-15) in arriving
at (2.8-48). The mean of the lowpass zonal filter output can be shown to be
given by

y (t) = s (t) s90 (t) =
Eb/Tb

2
sin ∆Φ (2.8 49)

where the “90” subscript denotes a phase shift of 90 deg in the corresponding
signal. Combining (2.8-48) and (2.8-49), the sampled mean of the lowpass zonal
filter output at time t = (n+ 1)Tb becomes

y ((k + 1)Tb) =
Eb/Tb

2
sin

(
αk

π

2

)
= αk

Eb/Tb
2

(2.8 50)

which clearly indicates the appropriateness of a hard limiter detector in the pres-
ence of noise. Figure 2-26 is an illustration of the various waveforms present in
the differentially coherent receiver of Fig. 2-25 for a typical input data sequence.

2.8.1.8 Synchronization Techniques. In our discussion of coherent reception
in Sec. 2.8.1.6, we implicitly assumed that a means was provided in the receiver
for synchronizing the phase of the local demodulation reference(s) with that of
the received signal carrier and also for time synchronizing the I&D circuits. Here
we discuss several options for implementing such means.

One form of combined carrier and clock recovery that is synergistic with the
transmitter form in Fig. 2-17 was originally proposed by DeBuda [30,31].14 With
reference to Fig. 2-27, the received MSK signal is first squared to produce an
FSK signal at twice the carrier frequency and with twice the modulation index,
i.e., h = 1, which is known as Sunde’s FSK [32]. Whereas the MSK signal has no
discrete (line) spectral components, after being squared, it has strong spectral
components at 2f1 and 2f2, which can be used for synchronization. In fact,
Sunde’s FSK has 50 percent of its total power in these two line components
(the other 50 percent of the total power is in a discrete line component at dc).
To demonstrate this transformation from continuous to discrete spectrum, we
square the MSK signal form in (2.8-30), which gives

14 DeBuda also referred to MSK, in conjunction with his self-synchronizing circuit, as “fast
FSK (FFSK),” which at the time was the more popular terminology in Canada.
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Fig. 2-26.  Various waveforms present in the differentially coherent recei-

ver shown in Fig. 2-25:  (a) transmitted bit sequence, (b) transmitted phase, 

(c) transmitted phase delayed, (d) difference phase, and (e) multiplier 

output (sine of difference phase).
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Fig. 2-27.  DeBuda's carrier and symbol synchronization scheme.
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(2.8 51)

where we have made use of the fact that since either v+
n or v−n is always equal

to zero, then v+
n v
−
n = 0. Also, either (v+

n )2 = 1 and (v−n )2 = 0 or vice versa,
which establishes (2.8-51) as a signal with only discrete line components. The
components at 2f1 and 2f2 are extracted by bandpass filters (in practice, phase-
locked loops) and then frequency divided to produce s1 (t) = (1/2) cos 2πf1t

and s2 (t) = (1/2) cos 2πf2t. The sum and difference of these two signals pro-
duce the reference “carriers” zc (t) = C (t) cos 2πfct and zs (t) = S(t) sin 2πfct,
respectively, needed in Fig. 2-12. Finally, multiplying s1 (t) and s2 (t) and low-
pass filtering the result produces (1/8) cos 2πt/2Tb (a signal at 1/2 the bit rate),
which provides the desired timing information for the I&Ds in Fig. 2-12.

Another joint carrier and timing synchronization scheme for MSK was de-
rived by Booth [33] in the form of a closed loop motivated by the maximum a
posteriori (MAP) estimation of carrier phase and symbol timing. The resulting
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structure [Fig. 2-28(a)] is an overlay of two MAP estimation I-Q closed loops—
one typical of a carrier synchronization loop, assuming known symbol timing
[Fig. 2-28(b)] and one typical of a symbol timing loop, assuming known carrier
phase [Fig. 2-28(c)]. In fact, the carrier synchronization component loop is iden-
tical to what would be obtained for sinusoidally pulse-shaped OQPSK.

Finally, many other synchronization structures have been developed for MSK
and conventional (single modulation index) binary CPM, which, by definition,
would also be suited to MSK. A sampling of these is given in Refs. 34–40. In the
interest of brevity, however, we do not discuss these here. Instead, the interested
reader is referred to the cited references for the details.

2.8.2 Partial Response—Gaussian MSK

GMSK was first introduced by Murota, Kinoshita, and Hirada [41] in 1981
as a highly bandwidth-efficient constant envelope modulation scheme for com-
munication in the 900-MHz land mobile radio environment (see [42,43] for field
experimental results of performance in this frequency band). In simple terms,
GMSK is an h = 0.5 partial-response CPM scheme obtained by filtering the rect-
angular frequency pulses characteristic of MSK with a filter having a Gaussian
impulse response prior to frequency modulation of the carrier.15 As such, the
GMSK frequency pulse is the difference of two time-displaced (by Tb seconds)
Gaussian probability integrals (Q-functions), i.e.,16

g(t) =
1

2Tb

[
Q

(
2πBTb√

ln 2

(
t

Tb
− 1

))
−Q

(
2πBTb√

ln 2
t

Tb

)]
,

Q (x) =
∫ ∞
x

1√
2π

exp
(
−y

2

2

)
dy, −∞ ≤ t ≤ ∞ (2.8 52)

15 It is important to emphasize that although the acronym GMSK was assigned to the term
Gaussian-filtered MSK in [41], the modulation actually described in this reference applies
the Gaussian filtering at baseband, i.e., prior to modulation onto the carrier, and, hence,
it does not destroy the constant envelope property of the resulting modulation. Perhaps
because of this poor usage of the term Gaussian-filtered MSK, occasionally there appears in
the literature [44, p. 519] a misleading statement alluding to the fact that GMSK is an “MSK
modulated signal passed through a Gaussian filter . . .,” which would imply Gaussian filtering
at RF, thereby destroying the constant envelope nature of the signal. This interpretation
is not in keeping with the original description of GMSK in [41] and the large number of
references that followed; thus, we caution the reader against adopting this usage.

16 We assume here a frequency pulse shape, g (t), that results from excitation of the Gaussian
filter (arbitrarily assumed to have zero group delay) with the unit rectangular pulse p(t) =
1, 0 ≤ t ≤ Tb.
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Fig. 2-28(a).  Joint carrier and symbol MAP estimation loop for MSK modulation.
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where B is the 3-dB bandwidth of the lowpass Gaussian filter and is related to
the noise bandwidth, BN , of this filter by [45, Eq. (14)]

B

BN
= 2

√
ln 2
π

= 0.93944 (2.8 53)

Smaller values of BTb lead to a more compact spectrum but also introduce
more ISI and, therefore, a degraded error probability performance. Thus, for a
given application, the value of BTb is selected as a compromise between spectral
efficiency and BEP performance.

Since the Gaussian Q-function is doubly infinite in extent, it is common
practice to time-truncate the GMSK frequency pulse so as to deal with finite ISI.
For BTb = 0.25, truncating g(t) of (2.8-52) to four bit intervals is appropriate [46]
whereas for BTb = 0.3, the value used in the Global System for Mobile (GSM)
application [47], considering ISI only from adjacent bits (i.e., time truncation
to three bit intervals) has been shown to be sufficient [48]. Thus, in practical
GMSK implementations, one employs the approximation (see Fig. 2-29)

−2 −1 0 1 2 3

t

0.4

0.3

0.2

0.1

0

g 
(t

 )

Fig. 2-29.  GMSK frequency pulse.

BTb = 0.25

BTb = 0.3
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g(t) =




1
2Tb

[
Q

(
2πBTb√

ln 2

(
t

Tb
− 1

))
−Q

(
2πBTb√

ln 2
t

Tb

)]
, − (L− 1)Tb/2 ≤ t

≤ (L+ 1)Tb/2

0, otherwise

(2.8 54)

where L is chosen as above in accordance with the value of BTb.17 Also, although
g (t) of (2.8-54) appears to have a “Gaussian-looking” shape, we emphasize that
the word Gaussian in GMSK refers to the impulse response of the filter through
which the input rectangular pulse train is passed and not the shape of the re-
sulting frequency pulse.

2.8.2.1 Continuous Phase Modulation Representation. Based on the
above, the CPM representation of GMSK is, analogous to (2.8-10),

sMSK(t) =
√

2Eb
Tb

cos

(
2πfct+

π

2Tb

∑
i

αi

∫ [
Q

(
2πBTb√

ln 2

(
τ

Tb
− (i+ 1)

))

−Q
(

2πBTb√
ln 2

(
τ

Tb
− i

))]
dτ

)
, nTb ≤ t ≤ (n+ 1)Tb (2.8 55)

which is implemented, analogous to Fig. 2-7, in Fig. 2-30(a). Equivalently, if the
input is represented by its equivalent NRZ data stream (i.e., the frequency pulse
stream that would ordinarily be inputted to the FM modulator in MSK), then
the filter impulse response, h (t), becomes Gaussian, as implied by the GMSK
acronym, i.e.,

h (t) =
1√

2πσ2
exp

(
− t2

2σ2

)
, σ2 =

ln 2
(2πB)2

(2.8 56)

(appropriately time-truncated as discussed above), and the implementation ap-
pears as in Fig. 2-30(b).

17 Technically speaking, g (t) of (2.8-53) should be scaled by a constant C so as to satisfy a
condition analogous to (2.8-5), namely,

q(t) =

∫ t

−∞
g(τ)dτ =

{
0, t ≤ − (L− 1) Tb/2

1/2, t ≥ (L + 1) Tb/2

However, for the values of BTb of practical interest, i.e., BTb ≥ 0.25, the scaling constant is
ignored, i.e., C is nominally taken as unity.
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Fig. 2-30(a).  GMSK transmitter (CPM representation).
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The frequency modulator in Fig. 2-30(a) or 2-30(b) is typically implemented
with a phase-locked loop (PLL) synthesizer whose voltage-controlled oscillator
(VCO) input is the point at which the modulation is injected. When long strings
of zeros or ones are present in the data, the spectrum of the modulation extends
to dc, which presents a problem, since PLL frequency synthesizers implemented
as above do not respond to this low-frequency signal due to their inherent high-
pass filter characteristic. As such, the VCO output (the location of the mod-
ulated signal) would not contain the low-frequency content of the information
(modulating) signal. By contrast, if the modulation were to be injected at the
input of the master oscillator preceding the PLL (the oscillator must be capable
of being modulated by a voltage signal), then since this oscillator is not in the
loop, the VCO output would contain the low-frequency content of the modulation
(i.e., that within the loop filter bandwidth) but not its high-frequency content.
Clearly then, a combination of these two approaches would yield the desirable re-
sult of constant modulation sensitivity, irrespective of the loop bandwidth. Such
an FM scheme is referred to as two-point modulation [49] and corresponds to a
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dc-coupled GMSK modulator wherein the Gaussian filtered input signal is split
sending one portion to the VCO modulation input and the other to the PLL
master oscillator input.

2.8.2.2 Equivalent I-Q Representations. For high carrier frequencies, direct
synthesis of the GMSK signal as in Fig. 2-7, using a digital approach is imprac-
tical since maintaining an adequate sampling rate requires an extremely high
operating frequency. Instead, one can resort to a quadrature implementation
where lowpass I and Q signals containing the phase information are generated
that vary much slower than the phase of the modulated carrier, thus making it
feasible to implement them digitally. Applying the simple trigonometric rule for
the cosine of the sum of two angles to (2.8-55), we obtain

sMSK (t) =
√

2Eb
Tb

[
cosφ (t,α) cos 2πfct− sinφ (t,α) sin 2πfct

]
(2.8 57)

where

φ (t,α) =

π

2Tb

∑
i

αi

∫ {
Q

(
2πBTb√

ln 2

(
τ

Tb
− (i+ 1)

))
−Q

(
2πBTb√

ln 2

(
τ

Tb
− i

))}
dτ

(2.8 58)

Conceptually then, an I-Q receiver for GMSK is one that performs the following
sequence of steps: first, the Gaussian-filtered NRZ data stream is generated.
Next, integration is performed to produce the instantaneous phase of (2.8-58).
Finally, the integrator output is passed through sine and cosine read-only mem-
ories (ROMs) whose outputs are applied to I and Q carriers (see Fig. 2-31).
Such a scheme has also been referred to as quadrature cross-correlated GMSK
(see [50, Fig. 4.3.20] for an illustration similar to Fig. 2-31). Several commercial
vendors and industrial organizations, e.g., Alcatel and Aerospace, have digitally
implemented this generic approach in the transmitter design of their GMSK
modems. In these implementations, the block labeled “Gaussian filter” is either
an actual filter that approximates the Gaussian impulse response as per (2.8-54)
or, more efficiently, a ROM table lookup, whereas the block labeled “integrator”
is typically performed by a “phase accumulator.”18

18 Without loss in generality, the Gaussian filter and integrator blocks can be switched as is the
case in some of the implementations.
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Fig. 2-31.  GMSK transmitter (I-Q representation).
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In [45], an efficient I-Q implementation of a GMSK modulator is presented
that skips the above sequence of steps and instead generates the I and Q base-
band signals directly from the binary data, thereby eliminating the errors in
filtering, phase truncation, and sine/cosine computation inherent in the conven-
tional architecture. A brief description of this method is as follows, based on the
assumption of ISI only from adjacent symbols, i.e., L = 3.

Consider the GMSK frequency response (pulse train) that generates the phase
of (2.8-58). If we impose the condition that this response in the mth bit interval,
mTb ≤ |t| ≤ (m+ 1)Tb, be dependent only on the bit of interest, αm, and its
two nearest neighbors, αm−1 and αm+1, i.e., only adjacent ISI, then it can be
shown [45, Eqs. (28), (29)] that it is sufficient to require

Q

(
2πBTb√

ln 2

)
∼= 0

Q

(
−2πBTb√

ln 2

)
∼= 1




(2.8 59)

Assuming (2.8-59) is true, then since by superposition the response to a train
of NRZ pulses varying from −1 to 1 is the equivalent to the response to a
rectangular pulse train varying from 0 to 2 minus a constant of value 1, the
normalized frequency response in the above interval can be expressed as
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gm(t) �=
∑

i=m−1,m,m+1

(αi + 1)

[
Q

(
2πBTb√

ln 2

(
t

Tb
− (i+ 1)

))

−Q
(

2πBTb√
ln 2

(
t

Tb
− i

))]
dt− 1

∼=(αm−1 + 1)Q

(
2πBTb√

ln 2

(
t

Tb
−m

))

+ (αm + 1)

[
Q

(
2πBTb√

ln 2

(
t

Tb
− (m+ 1)

))
−Q

(
2πBTb√

ln 2

(
t

Tb
−m

))]

+ (αm+1 + 1)

[
1−Q

(
2πBTb√

ln 2

(
t

Tb
− (m+ 1)

))]
− 1 (2.8 60)

Alternatively, since the Gaussian Q-function can be expressed in terms of the
error function byQ (x) = (1/2)

[
1 + erf

(
x/
√

2
)]

, then letting α′i = (1/2) (αi + 1)
denote the (0,1) equivalent of the (−1, 1) αi’s, and introducing the constant
β
�= πB

√
2/ ln 2, as in Eq. (19) of Ref. 45, (2.8-60) can be rewritten as

gm (t) ∼= α′m−1

[
1− erf

(
β (t−mTb)

)]
+ α′m

[
erf

(
β (t−mTb)

)
− erf

(
β (t− (m+ 1)Tb)

)]
+ α′m+1

[
1 + erf

(
β (t− (m+ 1)Tb)

)]
− 1 (2.8 61)

Corresponding to the values (0,1) for each of the three α′is in (2.8-61), there
are eight possible waveforms fi (t−mTb) , i = 0, 1, 2, · · · , 7 that characterize the
frequency response in the mth bit interval. These are given in Table 2-1 assuming
m = 0 for simplicity.
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Table 2-1. Possible frequency responses
in the interval 0 <– t <– Tb .

α′−1, α′0, α′1 i fi(t)

000 0 −1

001 1 erf
(
β(t− Tb)

)
010 2 erf(βt)− erf

(
β(t− Tb)

)
− 1

011 3 erf(βt)

100 4 − erf(βt)

101 5 − erf(βt) + erf
(
β(t− Tb)

)
+ 1

110 6 − erf
(
β(t− Tb)

)
111 7 1

We observe from this table that there are only three independent frequency
response waveforms, i.e., f2 (t) , f3 (t) , f7 (t), in that the remaining five can be
obtained from these three by means of simple operations, namely,

f0 (t) = − f7 (t)

f1 (t) = f3 (t)− f2 (t)− f7 (t) = f3 (t− Tb)

f4 (t) = − f3 (t)

f5 (t) = − f2 (t)

f6 (t) = − f1 (t)




(2.8 62)

In view of the above, the frequency modulating signal corresponding to the phase
modulating signal of (2.8-58) can be expressed in the form of a data-dependent
pulse train as

f (t,α) =
1
2π

d

dt
φ (t,α) =

1
4Tb

∑
i

fl(i) (t− iTb) p (t− iTb) (2.8 63)

where as before, p (t) is a unit amplitude rectangular pulse in the interval 0 ≤
t ≤ Tb and the index l (i) = 4ai−1 + 2ai + ai+1 is the decimal equivalent of
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the 3-bit binary sequence influencing the ith bit interval and determines the
particular frequency waveform for that interval in accordance with Table 2-1.
The corresponding complex phase modulating signal can be written in the form

exp {φ(t,α)} = exp

{∑
i

φl(i) (t− iTb) p (t− iTb)

}
,

φi(t) =
π

2Tb

∫ t

0

fi (τ) dτ + φi(0) (2.8 64)

where φi (0) is the initial phase value that depends on the past history of
the data sequence. Analogous to Table 2-1, there are eight possible phase
responses in any given bit interval. These are evaluated in Ref. 45, using
the approximation of (2.8-59) (reformulated in terms of the error function as
erf (βTb) ∼= 1, erf (−βTb) ∼= −1), along with appropriate asymptotic expansions
of the error function. Once again, there are only three independent phase re-
sponse waveforms, e.g., φ2 (t) , φ3 (t) , φ7 (t), and the remaining five can be ob-
tained from these three by means of simple operations.

The phase responses are used to determine phase trellises, keeping in mind
that the sequences of possible phase trajectories generated by the 3-bit data se-
quences in each bit interval are constrained by the fact that only one of the 3 bits
changes from interval to interval. Thus, for example, 010 can only be followed
by 100 or 101. Furthermore, since we are interested only in the sine and cosine
of the phase, it is sufficient to consider the phase trajectories modulo 2π. Using
these trellises, it is shown in Ref. 45 that only four curves of Tb-s duration are
needed to generate the I (from the cosine of the phase) and Q (from the sine
of the phase) signals directly from the input data sequence for that bit inter-
val. This is accomplished with a table lookup ROM that stores these four basic
curves.

Finally, the practical trade-offs in terms of recent digital integrated circuit
(IC) technology between the FM/VCO and I-Q transceiver architectures are
discussed in Ref. 51.

2.8.2.3 Other GMSK Representations—The Laurent Expansion. A
decade and a half ago, Laurent [52] described a representation for CPM in
the form of a superposition of phase-shifted amplitude-modulation pulse (AMP)
streams, the number of such being dependent on the amount of partial response
in the modulation, as described by the duration (in bits) of the frequency pulse.
A full-response scheme such as MSK required only a single pulse stream (with
complex symbols). The primary focus of this work was on binary modulation
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because of its relative simplicity of implementation.19 The motivation for pre-
senting such a representation was twofold. First, it allowed for easier evaluation
of the autocorrelation and PSD of such modulations; in particular, simple results
were specifically obtained for half-integer index modulations, i.e., ones whose fre-
quency modulation index was of the form h = n + 1/2, n integer. Second, it
allowed for approximation (with good accuracy) of CPM by a single pulse stream
with one optimized pulse shape (called the “main pulse”) and as such offered a
synthesis means no more complicated than MSK.

Three years later, Kaleh [46] exploited Laurent’s representation of CPM to
allow for simple implementation of coherent receivers of such modulations, in
particular, for the case of GMSK. Two forms of such receivers were considered,
namely, a simplification of the optimum MLSE receiver and a linear MSK-type
receiver, both of which yielded small degradation relative to the true optimum
MLSE receiver.

In this section, we summarize the key results of these papers in so far as the
transmitter implementation is concerned, devoting more time to the interpreta-
tions of the results than to the details of the derivations.

a. Exact AMP Representation of GMSK. In what follows, it will be con-
venient to deal with the complex envelope of the signal s(t), i.e., the complex
baseband signal, S̃(t), defined by the relation

s(t) = Re
{
S̃(t)ej2πfct

}
(2.8 65)

Thus, from (2.8-1), we have for binary CPM

S̃(t) =
√

2Eb
Tb

exp {jφ (t,α)} , nTb ≤ t ≤ (n+ 1)Tb (2.8 66)

For h = 0.5 partial-response CPM, where the frequency pulse has duration LTb
(remember from our previous discussion that the value of L used to approximate
GMSK is a function of the value of BTb of interest), Laurent showed after much
manipulation that the complex envelope in (2.8-66) could be expressed as20

19 The work was later extended to the M -ary case by Mengali and Morelli [53].

20 For observation of the signal in the Nth transmission interval, (N − 1)Tb ≤ t ≤ NTb, the
upper limit on n in (2.8-67) and (2.8-68) can be changed from ∞ to N − 1 since the signal
does not depend on future data bits. Furthermore, for a finite data sequence of length N ,
i.e., α0, α1, · · · , αN−1, the lower limit on n in (2.8-67) and (2.8-68) can be changed from −∞
to 0.
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S̃(t) =
√

2Eb
Tb

2L−1−1∑
K=0

[ ∞∑
n=−∞

ej
π
2AK,nCK (t− nTb)

]

�=
√

2Eb
Tb

2L−1−1∑
K=0

[ ∞∑
n=−∞

ãK,nCK (t− nTb)

]
(2.8 67)

which results in the real CPM signal

s(t) =
√

2Eb
Tb

2L−1−1∑
K=0

[ ∞∑
n=−∞

CK (t− nTb) cos
(
2πfct+

π

2
AK,n

)]
(2.8 68)

i.e., a superposition of 2L−1 amplitude-/phase-modulated pulse streams. In
(2.8-68), CK (t) is the equivalent pulse shape for the kth AMP stream and is
determined as follows:

First, define the generalized phase pulse function by

Ψ(t) =



πq(t), 0 ≤ t ≤ LTb

π

2
[1− 2q (t− LTb)] , LTb ≤ t

(2.8 69)

which is obtained by taking the nonconstant part of the phase pulse, q(t), that
exists in the interval 0 ≤ t ≤ LTb and reflecting it about the t = LTb axis.21

Therefore, in view of (2.8-69), Ψ(t) is a waveform that is nonzero in the interval
0 ≤ t ≤ 2LTb and symmetric around t = LTb. The symmetry around t = LTb
assumes that the frequency pulse, g (t), is even symmetric around t = LTb/2 and,
thus, the phase pulse q (t) is odd symmetric around the value π/4 at t = LTb/2.
Next define

S0(t)
�= sin Ψ(t)

Sn(t) �= S0(t+ nT ) = sin Ψ(t+ nT )


 (2.8 70)

Finally,

21 For the Laurent representation, it is convenient to shift the frequency pulse of (2.8-54) to the
interval 0 ≤ t ≤ LTb before integrating it to get the phase pulse, q(t).
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CK(t) = S0(t)
L−1∏
i=1

Si+LβK,i(t), 0 ≤ K ≤ 2L−1 − 1, 0 ≤ t ≤ TbK ,

TbK = Tb × min
i=1,2,···,L−1

[
L (2− βK,i)− i

]
(2.8 71)

where βK,i, i = 1, 2, · · · , L− 1 are the coefficients in the binary representation of
the integer K, i.e.,

K =
L−1∑
i=1

2i−1βK,i (2.8 72)

Note from (2.8-71) that each of the equivalent pulse waveforms, CK (t), in general
have different durations, and, consequently, the pulse streams in (2.8-68) consist
of overlapping pulses.

The complex phase coefficient ãK,n
�= ej(π/2)AK,n associated with the nth

T -s translate of this Kth pulse shape, namely CK(t − nT ), is also expressible
in terms of the binary representation of the integer K as given in (2.8-72). In
particular,

AK,n =
n∑

i=−∞
αi −

L−1∑
i=1

αn−iβK,i = A0,n −
L−1∑
i=1

αn−iβK,i

A0,n = αn +A0,n−1




(2.8 73)

and thus,

ãK,n
�= ej(π/2)AK,n = exp

[
j
π

2

(
A0,n−L +

L−1∑
i=0

αn−i −
L−1∑
i=1

αn−iβK,i

)]

= ã0,n−Le
j(π/2)αn

L−1∏
i=1

ej(π/2)αn−i[1−βK,i] (2.8 74)

Before proceeding further, we present an example corresponding to a partic-
ular value of L to illustrate the above description of the representation. Consider
the case of L = 4, which as previously mentioned, is adequate to represent GMSK
with BTb ≥ 0.25. Therefore, from (2.8-71), there are 2L−1 = 8 different CK (t)’s,
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i.e., C0 (t) , C1 (t) , · · · , C7 (t), each of which is a product of the basic generalized
pulse shape S0(t) and L − 1 = 3 other Si(t)’s with the particular ones being
chosen according to the coefficients in the binary representation of the index, K.
For example, for K = 3, we would have

K = 3 = 20 × 1 + 21 × 1 + 22 × 0 ⇒ β3,1 = 1, β3,2 = 1, β3,3 = 0 (2.8 75)

and thus,

C3(t) = S0(t)
3∏
i=1

Si+4β3,i(t) = S0(t)S5(t)S6(t)S3(t), 0 ≤ t ≤ Tb3 = 2Tb

(2.8 76)
In summary,

C0(t) = S0(t)S1(t)S2(t)S3(t), 0 ≤ t ≤ 5Tb

C1(t) = S0(t)S2(t)S3(t)S5(t), 0 ≤ t ≤ 3Tb

C2(t) = S0(t)S1(t)S3(t)S6(t), 0 ≤ t ≤ 2Tb

C3(t) = S0(t)S3(t)S5(t)S6(t), 0 ≤ t ≤ 2Tb

C4(t) = S0(t)S1(t)S2(t)S7(t), 0 ≤ t ≤ Tb

C5(t) = S0(t)S2(t)S5(t)S7(t), 0 ≤ t ≤ Tb

C6(t) = S0(t)S1(t)S6(t)S7(t), 0 ≤ t ≤ Tb

C7(t) = S0(t)S5(t)S6(t)S7(t), 0 ≤ t ≤ Tb




(2.8 77)

From (2.8-74) the set of complex phase coefficients for the third pulse train
corresponding to C3(t) of (2.8-76) would be

ã3,n = ã0,n−4e
j(π/2)αn

3∏
i=1

ej(π/2)αn−i[1−β3,i] = ã0,n−4e
j(π/2)αnej(π/2)αn−3

(2.8 78)

The complete group of phase coefficient sets for all eight pulse trains is given by
(also see [46, Eq. (A.19)])
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ã0,n = ã0,n−4e
j(π/2)αnej(π/2)αn−1ej(π/2)αn−2ej(π/2)αn−3

= jαn+αn−1+αn−2+αn−3 ã0,n−4 = jαn ã0,n−1

ã1,n = ã0,n−4e
j(π/2)αnej(π/2)αn−2ej(π/2)αn−3

= jαn+αn−2+αn−3 ã0,n−4 = jαn ã0,n−2

ã2,n = ã0,n−4e
j(π/2)αnej(π/2)αn−1ej(π/2)αn−3

= jαn+αn−1+αn−3 ã0,n−4 = jαn+αn−1 ã0,n−3

ã3,n = ã0,n−4e
j(π/2)αnej(π/2)αn−3 = jαn+αn−3 ã0,n−4 = jαn ã0,n−3

ã4,n = ã0,n−4e
j(π/2)αnej(π/2)αn−1ej(π/2)αn−2 = jαn+αn−1+αn−2 ã0,n−4

ã5,n = ã0,n−4e
j(π/2)αnej(π/2)αn−2 = jαn+αn−2 ã0,n−4

ã6,n = ã0,n−4e
j(π/2)αnej(π/2)αn−1 = jαn+αn−1 ã0,n−4

ã7,n = ã0,n−4e
j(π/2)αn = jαn ã0,n−4




(2.8 79)

It is to be emphasized that to the extent that GMSK can be approximated by
a partial-response CPM with finite L, the AMP representation is exact. For the
case of L = 4, Ref. 46 states that, based on computer simulations, the first AMP
component corresponding to the pulse stream {C0(t− nT )} contains the fraction
0.991944 of the total signal energy, and the second component corresponding to
the pulse stream {C1(t− nT )} contains the fraction 0.00803 of the total energy.
Thus, the remaining six components contain only the fraction 2.63× 10−5 of the
total signal energy, and thus, to a good approximation can be ignored. Hence,
we conclude that for values of BTb, where L = 4 is an appropriate value for
the truncation of the frequency pulse, a two pulse stream AMP representation
corresponding to K = 1 and K = 2 is sufficient to approximate GMSK, i.e.,

S̃GMSK(t) =
√

2Eb
Tb

[ ∞∑
n=−∞

ã0,nC0 (t− nTb) +
∞∑

n=−∞
ã1,nC1 (t− nTb)

]
(2.8 80)

where C0 (t) and C1 (t) are determined from the first two equations in (2.8-77)
(see Fig. 2-32 for an illustration of these two waveforms) and, likewise, ã0,n and
ã1,n are determined from the first two equations of (2.8-79). Since the actual
data symbols, {αn}, range over the values ±1, then the even and odd complex
symbols for each of the two pulse streams take on values
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Fig. 2-32.  Pulse shapes for first and second AMP streams.
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(2.8 81)

which clearly indicate a representation composed of the superposition of two I-Q
signals. Note that the sequences {ã0,n} and {ã1,n} are themselves uncorrelated
as well as being mutually uncorrelated, viz.,

E
{
ã0,kã

∗
1,k−m

}
= E

{
jαkjαk−1 · · · jαk−m−1ã0,k−m−2 ×−jαk−mã∗0,k−m−2

}
= ± E {αkαk−1 · · ·αk−m−1αk−m} = 0, m > 0 (2.8 82)

Furthermore, since for binary ±1 data, jαn = jαn, then the first two equations
of (2.8-79) become
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ã0,n = jαnã0,n−1

ã1,n = jαnã0,n−2


 (2.8 83)

which clearly identifies the fact that the complex symbols for the two pulse
streams are obtained from a differentially encoded version of the input data.
Finally, the corresponding real (±1) symbols on the I and Q channels for the
two pulse streams are

aI0,n = ã0,2n+1 = Re {ã0,2n+1}

aQ0,n = − jã0,2n = Im {ã0,2n}

aQ1,n = − jã1,2n+1 = Im {ã1,2n+1}

aI1,n = ã1,2n = Re {ã1,2n}




(2.8 84)

and, hence, the real GMSK two pulse stream approximation corresponding to
(2.8-80) is

sGMSK(t) =
√

2Eb
Tb

[ ∞∑
n=−∞

aI0,nC0 (t− (2n+ 1)Tb) cos 2πfct

−
∞∑

n=−∞
aQ0,nC0 (t− 2nTb) sin 2πfct

+
∞∑

n=−∞
aI1,nC1 (t− 2nTb) cos 2πfct

−
∞∑

n=−∞
aQ1,nC1 (t− (2n+ 1)Tb) sin 2πfct

]
(2.8 85)

which has the implementation of Fig. 2-33. Note that each of the pulse streams
is in the form of a pulse-shaped OQPSK modulation with overlapping pulses and
effective symbol rate Ts = 2Tb on each of the quadrature channels. Also, the
encoding of the first pulse stream is a conventional differential encoder whereas
the second pulse stream is generated from a product of the input data stream
and a delayed version of the differentially encoded output of the first stream.
Therefore, from a data encoding standpoint, the first pulse stream resembles
MSK whereas the second does not.
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b. Precoded GMSK. Because of the different encodings for the first and
second pulse streams, we can only fully compensate for one of the two with a
precoding operation. Thus, proceeding as in the MSK case, if we precede the
GMSK modulator with a differential decoder [see Fig. 2-34(a)], then, as was true
for MSK, the first pulse stream of the equivalent I-Q representation would no
longer have a differential encoder at its front end. The effect of the precoding
on the second pulse stream of the equivalent I-Q representation is to produce a
particular feed-forward type of encoding [see Fig. 2-34(b)] that can be shown to
be equivalent to a two-stage differential decoder (see Fig. 2-35). Such precoded
GMSK has been considered by several authors in the literature [54–57] as a
means of improving receiver performance.

2.8.2.4 Power Spectral Density Considerations. As mentioned above, one
advantage of the Laurent representation is that it provides a simple means of
computing the PSD. In particular, since the various pulse-stream equivalent data
sequences are both self- and mutually uncorrelated, for the GMSK signal with
complex form as in (2.8-67), the PSD is simply

S (f) = Eb

2L−1−1∑
k=0

1
Tb
|Ck (f)|2, Ck (f) = F {Ck (t)} (2.8 86)

or for L = 4 and the two pulse stream approximation of (2.8-80),

S (f) =
Eb
Tb

[
|C0 (f)|2 + |C1 (f)|2

]
(2.8 87)

Figure 2-36 is a plot of the normalized (all curves start at zero decibels at zero
frequency) GMSK PSD as computed from (2.8-86), with frequency pulse length
in bits, L, as a parameter. The values of BTb have been chosen equal to the
reciprocal of L. Thus, for example, a value of L = 4 results in a curve for BTb =
0.25 that corresponds to the special case previously considered. Comparing
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Fig. 2-34(a).  Precoded GMSK transmitter.
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GMSK (    = 2 = 1/       = 1 = 1/     )

GMSK (    = 2 = 1/       = 2 = 1/     )

GMSK (    = 2 = 1/       = 3 = 1/     )
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Fig. 2-36.  Power spectral density of GMSK with         as a parameter. 

Redrawn from [54].
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Fig. 2-36 with Fig. 2-15, we observe the potentially significant improvement in
spectral efficiency of the partial-response CPM modulation (GMSK) over the
full-response CPM modulation (MSK), when the value of BTb is sufficiently less
than unity. Finally, we note that the PSD of precoded GMSK is identical to
that of GMSK.

2.8.2.5 Approximate AMP Representation of GMSK Based on a
Single Pulse Stream. Before moving on to a discussion of the various types
of receivers that have been proposed for GMSK, it is instructive to further ap-
proximate (simplify) the AMP representation, since the structure of one of these
receivers stems from this approximation. In the AMP representation of (2.8-67)
or (2.8-68), the dominant term is the pulse stream corresponding to C0 (t) (for
full-response CPM, i.e., L = 1, it would be the only one), since its duration is
the longest (at least 2Tb longer than any other pulse component) and it also
conveys the most significant part of the total energy of the signal. (Although
Laurent never proves the latter mathematically, it appears to be the case for all
practical CPM scenarios.) Thus, approximating the AMP representation with
a single pulse stream, which is an exact representation for MSK, is a reason-
able thing to do. As such, we propose an approximation of (2.8-67), where the
pulse shape, P (t) (called the “main pulse” in Ref. 52), used for the single-stream
AMP representation should have the same phase shift as that associated with
C0 (t) and must satisfy some optimization criterion in the sense of being the best
approximation of the signal, viz.,

ˆ̃S(t) =
∞∑

n=−∞
ej(π/2)A0,nP (t− nTb) =

∞∑
n=−∞

ej(π/2)
∑n

i=0
αiP (t− nTb) (2.8 88)

The optimization criterion selected by Laurent consisted of minimizing the aver-
age energy of the difference between the complete signal and its approximation.
Two methods are proposed in Ref. 52 for solving this optimization problem in the
general case of CPM with modulation index, h, the second of which is preferred
because it illustrates the important properties of the main pulse. In particular,
P (t) is expressed as a weighted superposition of time-shifted versions of the finite
duration components, Ci(t). It is further shown in Ref. 52, that regardless of
the value of L, for h = 0.5 (as is the case for GMSK), the main pulse is simply
given by C0 (t). Hence, we conclude that using only the first AMP component
of the signal is the best—and naturally the simplest—possible approximation in
the above mean-square energy sense.

2.8.2.6 Coherent GMSK Receivers and Their Performance. A vari-
ety of different types of receivers [46,54,56,57] have been proposed for coherent
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detection of GMSK; most of them are based on the Laurent representation and
employ the Viterbi Algorithm (VA) [58]. To start the discussion, we consider
first the optimum receiver based upon an L-bit duration GMSK frequency pulse.

Because of the memory inherent in CPM, regardless of its mathematical rep-
resentation, the optimum receiver (from the standpoint of minimizing the mes-
sage error probability) has the form of an MLSE which is typically implemented
using the VA. This receiver employs m = 2L−1 − 1 filters matched to each of
the m pulse shapes in the complex baseband AMP representation of (2.8-67).
These filters act on the received complex signal plus noise, and their outputs
are inputted to a VA whose decision metric is based upon the equivalent data
stream encodings of (2.8-79) (see Fig. 2-37). The number of states in the trellis
diagram characterizing the receiver is equal to 2L, e.g., L = 4 would require a
16-state trellis.

a. Optimum Receiver. When the GMSK signal of (2.8-68) is transmitted
over an AWGN channel, the received signal is given by

z(t) = s(t) + n(t) (2.8 89)

where n(t) is as before a zero mean Gaussian process, independent of the sig-
nal, with single-sided PSD equal to N0 watts/hertz. Since for a length N data

Fig. 2-37.  Optimum GMSK receiver.
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sequence, all of the possible 2N transmitted signals have equal energy and are
equally likely, the optimum receiver that minimizes the message (sequence) error
probability chooses that message, i, that maximizes the metric

Λi = 2
∫ ∞
−∞

z(t)si(t)dt = Re
{∫ ∞
−∞

Z̃(t)S̃∗i (t)dt
}

(2.8 90)

where the second equality ignores the second harmonic carrier term, si(t) is the
signal corresponding to the ith data sequence with complex envelope S̃i(t), and
analogous to (2.8-65)

z(t) = Re
{
Z̃(t)ej2πfct

}
(2.8 91)

Substituting (2.8-67) in (2.8-90) yields an additive form for the metric, namely,

Λi =
√

2Eb
Tb

N−1∑
n=0

λi(n) (2.8 92)

where λi(n) is the trellis branch metric given by

λi(n) = Re




2L−1−1∑
K=0

ãiK,n
∗
∫ ∞
−∞

Z̃(t)CK (t− nTb) dt




�= Re




2L−1−1∑
K=0

ãiK,n
∗
rK,n


 (2.8 93)

The superscript “i” on the equivalent complex data symbols denotes the ith data
sequence, i.e., these are the N symbols corresponding to the signal, si(t). The
correlation values

rK,n =
∫ ∞
−∞

Z̃(t)CK (t− nTb) dt, 0 ≤ K ≤ 2L−1 − 1, 0 ≤ n ≤ N (2.8 94)

are thus sufficient statistics for making the message decision and can be obtained
for any fixed n by sampling the outputs of the bank of 2L−1 matched filters in
Fig. 2-37 at time t = nTb.
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Computation of an nth branch metric requires knowledge of the equivalent
complex data sequence {ãK,n}. This in turn can be found from the current
data symbol αn and a state defined by the vector (a0,n−L, αn−L+1, αn−L+2, · · · ,
αn−2, αn−1). Therefore, the decision rule can be implemented by inputting the
set of matched filter output samples to a VA using the above state definition and
current symbol to define the trellis states and transitions between them. The
complexity of the VA is proportional to the number of states, which as previously
mentioned, is equal to 2L.

b. Simplified (Suboptimum) GMSK Receivers. Using the approximate AMP
representation discussed in Sec. 2.8.2.5, Kaleh [46] first derived a reduced-
complexity Viterbi detector that achieved near-optimal performance. By
“reduced-complexity,” we mean that the number of matched filters and VA states
is appreciably smaller than would be required for the truly optimum receiver. In
particular, a receiver consisting of only two matched filters and a four-state VA
resulted in a performance degradation of less than 0.24 dB relative to the opti-
mum and much more complex receiver. In addition to the simplification of the
optimum receiver based on an error probability criterion, Kaleh also considered
an optimum coherent linear receiver based on a minimum mean-square error
(MMSE) criterion. Such a receiver has a generic form analogous to that used for
detection of MSK (as such it was referred to in Ref. 46 as an MSK-type receiver)
except for the fact that the receive filter is composed now of a combination of
matched and Wiener-type filters. In what follows, we explore these two receiver
options.

The complexity of the optimum MLSE receiver can be reduced by approx-
imating the AMP representation with a smaller number of pulse streams, as
previously discussed. In particular, consider replacing the 2L−1 pulse streams
in (2.8-67) by the first K̂ of them, where K̂ is chosen such that the remaining
components cumulatively have very small energy [(2.8-80) is a particular exam-
ple of this where K̂ = 2]. As such, we can write the transmitted signal in the
approximate (simplified) complex baseband form

ˆ̃S(t) =
√

2Eb
Tb

K̂−1∑
K=0

[ ∞∑
n=−∞

ejπhAK,nCK (t− nTb)

]

�=
√

2Eb
Tb

K̂−1∑
K=0

[ ∞∑
n=−∞

ãK,nCK (t− nTb)

]
(2.8 95)

where the “hat” is used to denote approximation. Then, in accorandance with
(2.8-92) the simplified receiver computes the approximate metric
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Λ̂i =
√

2Eb
Tb

N−1∑
n=0

λ̂i(n) (2.8 96)

where

λ̂i(n) = Re



K̂−1∑
K=0

ãiK,n
∗
∫ ∞
−∞

ˆ̃Z(t)CK (t− nTb) dt


 �= Re



K̂−1∑
K=0

ãiK,n
∗
rK,n




(2.8 97)

and ˆ̃Z(t) corresponds to the received version of ˆ̃S(t). Since rK,n,K = K̂, K̂

+ 1, · · · , 2L−1 − 1 are considered as irrelevant, the number of matched filters
needed in Fig. 2-37 is reduced from 2L−1 to K̂. Also, a great reduction in the
complexity of the VA is achieved, since the number of states can accordingly be
reduced from 2L to 2K̂.

Pursuing now in detail the case where K̂ = 2, the even branch metrics in
(2.8-97) are given by

λ̂i(2n) = Re
{
ãi0,2n

∗
r0,2n + ãi1,2n

∗
r1,2n

}

= Re
{
ai0,2n

∗
r0,2n

}
+ Re

{
−jαi2nãi0,2n−2

∗
r1,2n

}

= ai0,2nRe {r0,2n}+ Re

{
−

ãi0,2n
ãi0,2n−1

ãi0,2n−2

∗
r1,2n

}

= ai0,2nRe {r0,2n}+ Re
{
−ai0,2njai0,2n−1a

i
0,2n−2r1,2n

}

=

current bit︷ ︸︸ ︷
ai0,2n Re {r0,2n}+

current bit︷ ︸︸ ︷
ai0,2n

2 previous bits︷ ︸︸ ︷
ai0,2n−1a

i
0,2n−2 Im {r1,2n} (2.8 98a)

whereas the odd branch metrics are given by

λ̂i(2n− 1) =

current bit︷ ︸︸ ︷
ai0,2n−1 Im {r0,2n−1} −

current bit︷ ︸︸ ︷
ai0,2n−1

2 previous bits︷ ︸︸ ︷
ai0,2n−2a

i
0,2n−3 Re {r1,2n−1}

(2.8 98b)
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Consequently, at any time, nTb, we see that the state vector is defined by
ai0,n−1a

i
0,n−2, i.e., the two previous equivalent real bits, which results in the

four-state trellis illustrated in Fig. 2-38. The VA makes decisions, ân, on the
real equivalent bits, an, from which the decisions on the actual transmitted bits
are obtained from the differential decoding operation

α̂2n = − â2nâ2n−1

α̂2n+1 = â2n+1â2n


 (2.8 99)

The performance of the simplified Viterbi receiver was computed in Ref. 46,
based on an upper bound obtained from the minimum Euclidean distance of the
signaling set. In particular, it is well known that for modulations characterized
by a trellis-type decoding algorithm, the bit error probability is upper bounded
by

Pb(E) ≤ CQ

(
dmin√
2N0

)
(2.8 100)

1
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1

1

−1 1

−1 −1

an−1,  an−2

an = 1

an = −1

Fig. 2-38.  Trellis diagram for a simplified Viterbi receiver for GMSK; BTb = 0.25.
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where C is a constant that depends on the number of nearest neighbors in the
constellation to the transmitted signal and dmin is the minimum Euclidean dis-
tance between transmitted signals. Using this measure of performance, it was
shown in Ref. 46 that the simplified Viterbi receiver that uses two matched filters
and a 4-state VA has a degradation of less than 0.24 dB when compared to the
optimum Viterbi receiver that requires 8 matched filters and a 16-state VA.

Next, we consider the implementation of simple MSK-type linear receivers
for GMSK (see Fig. 2-39). Such receivers are memoryless and make bit-by-bit
decisions on the transmitted data. In the case of true MSK, the receiver operates
in the absence of ISI and, thus, the receive filter is merely the matched filter to
the transmitted amplitude pulse shape, i.e., C0(t) = S0 (t) = sinπt/2Tb. Even
in the case of generalized MSK with h = 0.5, the receive filter still operates in
the absence of ISI with a matched receive filter in accordance with C0(t), which
from (2.8-69) and (2.8-70) would be now given by

C0(t) = S0(t) =




sin
(
πq(t)

)
, 0 ≤ t ≤ Tb

sin
(π

2
[
1− 2q(t− Tb)

])
, Tb ≤ t ≤ 2Tb

(2.8 101)

Before showing how such a receiver must be modified for GMSK, we first review
its application to MSK.

Sample at t = 2kTb

Sample at t = (2k −1)Tb

Fig. 2-39.  Baseband model of an MSK-type system for GMSK.
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For MSK with L = 1, the branch metric of (2.8-93) would simplify to

λi(n) = Re
{
ãi0,n

∗
r0,n

}
= Re

{
ãi0,n

}
Re {r0,n}+ Im

{
ãi0,n

}
Im {r0,n}

=
{
a0,nRe {r0,n} , n even
a0,nIm {r0,n} , n odd (2.8 102)

where

r0,n =
∫ ∞
−∞

Z̃(t)C0 (t− nTb) dt, 0 ≤ n ≤ N (2.8 103)

which is the output of a single filter matched to C0 (t) and sampled at time
t = nTb. Since the branch metric only depends on the current symbol, a mem-
oryless receiver is appropriate for making decisions on the equivalent real data
bits, {a0,n}. Therefore, if we alternately sample the real and imaginary parts
of the matched filter output at intervals of Tb s, we obtain ISI-free decisions on
these bits. The true data bits are still obtained by following these decisions with
the differential decoding operation of (2.8-99).

For GMSK, a superimposed I-Q representation is still possible. However,
because the equivalent pulse shapes now spread over many symbol intervals and
because more than one AMP component is present, the receive filter in Fig. 2-39
must be more complex than just a simple matched filter in order to account for
the ISI inherent in the signal and the interference produced by the other AMP
component(s). The nature of the modification of the receive filter required to
accommodate these additional degradations is discussed below.

Consider then the transmitted signal of (2.8-95), where we explicitly substi-
tute K̂ = 2 so as to correspond to the approximation discussed above for GMSK.
Omitting herein the “hat” on S̃(t) to simplify the notation, we have [see (2.8-80)]

S̃(t) =
√

2Eb
Tb

∞∑
n=−∞

ã0,nC0 (t− nTb) +
√

2Eb
Tb

∞∑
n=−∞

ã1,nC1 (t− nTb) (2.8 104)

with corresponding received signal

Z̃(t) = S̃(t) + Ñ(t) (2.8 105)

The second term in (2.8-104) may be viewed as an interference term. Since we
have restricted ourselves to a linear receiver of the type in Fig. 2-39, we shall



Constant Envelope Modulations 89

at first ignore this interference term and design the receive filter to match only
the first of the two AMP components in (2.8-104). Hence, in view of (2.8-102),
we form the output statistics Re {r0,2k} and Im {r0,2k+1}, which are obtained
by alternately sampling the real and imaginary components of the output of a
matched filter (impulse response h(t) = C0(t)) at Tb-s intervals, where C0(t) is
now defined as in (2.8-77). Substituting (2.8-105) together with (2.8-104) into
(2.8-103) and simplifying gives

Re {r0,2k} =
√

2Eb
Tb

[∑
m

ã0,2k−2mp00 (2mTb) +
∑
m

ã1,2k−2m+1p10 (2mTb)

]

+ Re {w2k}

(2.8 106)

Im {r0,2k+1} =
√

2Eb
Tb

[∑
m

Im {ã0,2k−2m+1} p00 (2mTb)

+
∑
m

Im {ã1,2k−2m+2} p10 (2mTb)

]
+ Im {w2k+1}

where

p00 (t) �=
∫
C0(τ)C0 (τ − t) dτ

p10 (t) �=
∫
C1(τ)C0 (τ − t) dτ

wk
�=

∫
Ñ(t)C0 (t− kT ) dt




(2.8 107)

Notice that even if we ignore the interference term in (2.8-104), i.e., assume the
ã1,k’s are all equal to zero, the metric components in (2.8-106) still contain ISI
terms due to the ã0,k symbols in that p00(2mTb) �= 0 for m �= 0. Thus, bit-
by-bit decisions based on the r0,k’s are not optimum. Furthermore, when the
interference term in (2.8-104) is accounted for, then bit-by-bit decisions based
on the r0,k’s are even more suboptimum. In Ref. 46, it is shown that by applying
an MMSE criterion, the performance of the linear receiver can be improved by
inserting between the matched filter and the threshold decision device a Weiner
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estimator, which takes the form of a finite impulse response (FIR) filter. This
should not be too surprising, since it is well-known that such a filter combina-
tion is optimum (in the mean-square error sense) for any binary pulse stream
that contains ISI and is transmitted over an AWGN. The input-output sample
characteristic of the Wiener filter with real coefficients {ck,−N ≤ k ≤ N} has
the mathematical form

yn =
N∑

k=−N
ckr0,n−2k (2.8 108)

Equivalently, the transfer function of this filter is given by

C
(
ej2πf(2Tb)

)
=

N∑
k=−N

cke
j2πfk(2Tb) (2.8 109)

Consequently, bit-by-bit decisions are made using Re {y2k} and Im {y2k+1} in
place of Re {r0,2k} and Im {r0,2k+1} in (2.8-102). The evaluation of the coeffi-
cients {ck} is performed in Ref. 46 as the solution to a set of Wiener-Hopf (linear)
equations involving samples of p00(t) and p10(t), namely,

N∑
k=−N

Ψikck =

(√
2Eb
Tb

)−1

p00 (−2iTb) , −N ≤ i ≤ N

Ψik =
∑
m

p00 (2mTb) p00

(
2 (m+ k − i)Tb

)

+
∑
m

p10

(
(2m− 1)Tb

)
p10

(
2 (m+ k − i− 1)Tb

)

+
N0Tb
2Eb

p00 (2 (k − i)Tb)




(2.8 110)

Instead of implementing two separate filters, the matched and Wiener filters
can be combined into a single optimum filter with impulse response

ho(t) = F−1
{
F

{
C0(−t)

}
C

(
ej2πf(2Tb)

)}
=

∞∑
k=−∞

ckC0 (−t+ 2kTb) (2.8 111)
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Alternating samples of the real and imaginary parts of the output of ho(t) in
(2.8-111) taken at Tb-s intervals produces the Re {y2k} and Im {y2k+1} values
needed for decisions on {a0,n}. A comparison of the impulse response of the
optimum receive filter as given by (2.8-111), with just the matched filter portion,
i.e, h(t) = C0(−t), is illustrated in Fig. 2-40. The eye diagram of the signal at
the output of the optimum receive filter is illustrated in Fig. 2-41 for the case of
BTb = 0.25.

Upper and lower bounds on the error probability of the linear MSK-type
receiver for GMSK are derived in Ref. 46 in the form of the sum of two Gaussian
probability integrals with appropriate arguments. These bounds were evaluated
for the case of BTb = 0.25 and N = 11 FIR filter coefficients. While it is
true that the four-state VA receiver performs better than the linear receiver
because in the former, the second AMP component [see (2.8-104)] is considered
as relevant whereas in the latter, it is treated as interference, the difference in
performance between the two is quite small. The reason that the performance
difference is small in the GMSK case is because the second AMP component has
small energy. For CPM schemes with rational modulation index other than 0.5,
one might expect a larger improvement from the simplified VA scheme.

2.8.2.7 Spectral Considerations in the Presence of Data Imbalance.
Analogous to the discussion in Sec. 2.7.2, we consider here the spectral behavior
of MSK, GMSK, and precoded GMSK in the presence of data imbalance. For
linear modulations produced by amplitude modulation of a binary pulse stream
on a carrier, e.g., QPSK and OQPSK, the effect of data imbalance on the PSD
is well documented, e.g., Chap. 2 of Ref. 1, manifesting itself in the addition of
a discrete spectral component to the overall PSD with no effect on the shape of

Fig. 2-40.  Comparison of the impulse responses of the optimum and matched 

receive filters. Vertical scaling is normalized. Redrawn from [46].
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Fig. 2-41.  Eye diagram at the output of the 

optimum receiver filter. Scaling is norma-

lized. Redrawn from [46].
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the continuous component. For phase (or frequency) modulation, the evaluation
of the PSD is considerably more complex, and the effect of data imbalance is
quite different in terms of its impact on both the discrete and continuous spectral
components of the modulator output. Because of these important differences and
their significance in relation to the specification on the tolerable amount of data
imbalance, the presentation will devote more attention to detail, considering first
the more generic MSK-type modulations and then including GMSK as a specific
case.

Of the many techniques available for evaluating the PSD of CPM schemes
[1,15,27,52,59], the one deemed most convenient by the author, particularly for
MSK-type modulations with data imbalance, is that which results from the Lau-
rent representation. As previously noted, when the input binary data is random
and balanced, the complex data sequences that characterize each of the 2L−1

AMP components are themselves uncorrelated, and, furthermore, are uncorre-
lated with each other. As such, the PSD of the composite CPM waveform is equal
to the sum of the PSDs of the AMP components, each of which is computed by
conventional PSD evaluation techniques for binary amplitude (unit magnitude)
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modulation of a carrier with a complex i.i.d. data sequence. The resulting PSD
under these ideal circumstances was presented in Sec. 2.8.2.4.

Here we expand upon the PSD evaluation found in Laurent [52] to include
the case of input data imbalance. Specifically, we shall show that because of the
presence of data imbalance, the effective complex data sequences that typify each
AMP pulse stream are now themselves correlated and, in addition, are correlated
with each other. The correlation properties of each of these sequences resemble
those of a first-order Markov process, and, hence, the PSD for each contains a
factor due to the pulse shape as well as a factor due to the sequence correlation.
Likewise, the cross-correlation properties of the sequences contain pulse shape
and correlation factors.

We begin by presenting the generic result for the PSD of a modulation com-
posed of a group of correlated data pulse trains, each of which contains its own
real pulse shape and complex data stream. Next, we apply this generic PSD
formula to first MSK and then GMSK. Since MSK is a full-response scheme,
its Laurent representation has only a single pulse stream, and, thus, the PSD
has no cross-correlation components. In line with our previous discussions of
approximate AMP representations of GMSK, in evaluating the PSD of GMSK,
we shall employ the two pulse stream approximation discussed in Sec. 2.8.2.3a
and characterized by (2.8-80) and later on in (2.8-104). The results that follow
are taken primarily from Ref. 60.

a. A Generic Expression for the PSD of a Sum of Random Pulse Trains
with Complex Data Symbols. Consider finding the PSD of a complex signal,
S̃ (t), of the form in (2.8-67). The traditional method of evaluating such a
PSD is to first find the autocorrelation function of S̃ (t), namely, RS̃ (t, t+ τ) =

E
{
S̃ (t) S̃∗ (t+ τ)

}
, then time-average to remove the cyclostationary property,

and, finally, take the Fourier transform of the result, i.e.,

SS̃ (f) = F
{〈
RS̃ (t, t+ τ)

〉}
(2.8 112)

By a straightforward extension of the results in Chap. 2 of Ref. 1, the following
result can be obtained:

SS̃(f) =
2L−1−1∑
i=0

Sii(f) +
2L−1−1∑
i=0

i<j

2L−1−1∑
j=0

Sji(f) (2.8 113)

where

Sii (f) = Sãi (f)Spi (f) (2.8 114)
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with

Sãi (f) =
∞∑

l=−∞
Rãi (l) e−j2πflTb , Rãi (l) = E

{
ãi,kã

∗
i,k+l

}

Spi (f) =
1
Tb
|Pi (f)|2 , Pi (f) �= F {Ci (t)}




(2.8 115)

and

Sji (f) = 2 Re
{
Sãji (f)Spji (f)

}
(2.8 116)

with

Sãji (f) =
∞∑

l=−∞
Rãji (l) e−j2πflTb , Rãji (l) = E

{
ãj,kã

∗
i,k+l

}

Spji (f) =
1
Tb
Pi (f)P ∗j (f) , Pi (f) �= F {Ci (t)}




(2.8 117)

Clearly then, the evaluation of the PSD involves finding the Fourier transform of
the various pulse shapes in the AMP representation and both the autocorrelation
and cross-correlation of the equivalent complex data sequences.

b. Cross-Correlation Properties of the Equivalent Complex Data Symbols and
Evaluation of the PSD. For MSK, the equivalent complex data symbols, {ã0,n},
are defined in terms of the actual input data symbols {αn} by the iterative
(complex differential encoding) relation

ã0,n
�= ej(π/2)A0,n = jαnã0,n−1 ⇒ ã0,2n ∈ {j,−j} , ã0,2n+1 ∈ {1,−1}

(2.8 118)

Suppose now that {αn} characterizes a random i.i.d. imbalanced source, i.e., one
where Pr {αn = 1} = 1 − p, Pr {αn = −1} = p with 0 ≤ p ≤ 1. Then, it is
straightforward to show that {ã0,n} is a first-order Markov source and as such,
it is balanced, i.e.,
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Pr {ã0,n = j} =
1
2
, Pr {ã0,n = −j} =

1
2

for n even

Pr {ã0,n = 1} =
1
2
, Pr {ã0,n = −1} =

1
2

for n odd


 (2.8 119)

and, thus, E {ã0,n} = 0. However, while the differential encoding operation
converts the imbalanced random i.i.d. source to a balanced source,22 the symbols
of the latter are now correlated. Using the defining relation for {ã0,n}, it is
straightforward to show that

Rã0 (l) �= E
{
ã0,nã

∗
0,n+l

}
= [−j (1− 2p)]l , l integer, Rã0 (−l) = R∗ã0

(l)

(2.8 120)

i.e., {ã0,n}, behaves analogously to a first-order Markov source having a transi-
tion probability equal to p. The discrete Fourier transform of (2.8-120) as needed
in (2.8-115) is obtained as

Sã0 (f) =
∞∑

l=−∞
Rã0 (l) e−j2πflTb =

∞∑
l=−∞

[
−j (1− 2p)

]l
e−j2πflTb

= 1 + 2
∞∑

l=−∞
(1− 2p)l e−j2πl(fTb+[1/4]) (2.8 121)

Using a well-known result [61] for the series in (2.8-121), namely,

∞∑
k=1

ak cos kθ =
a cos θ − a2

1− 2a cos θ + a2
(2.8 122)

we obtain the closed-form result

Sã0 (f) =
4p (1− p)

2 (1− 2p) (1 + sin 2πfTb) + 4p2
(2.8 123)

Finally, taking the Fourier transform of the pulse shape C0 (t) = sinπt/2Tb and
substituting its squared magnitude in (2.8-115), the complex baseband PSD of
MSK with imbalanced data input becomes

22 The implication of a balanced equivalent complex symbol stream for the AMP representation
of MSK is that no discrete spectrum will be generated.
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Sm̃ (f ; p) = Tb
16
π2

cos 2πfTb
(1− 16f2T 2

b )2

[
4p (1− p)

2 (1− 2p) (1 + sin 2πfTb) + 4p2

]
(2.8 124)

Note that because of the presence of the term sin 2πfTb in the denominator
of (2.8-123), the equivalent baseband spectrum of (2.8-124) is not symmetric
around f = 0. Since the PSD of the true MSK signal is related to the equivalent
baseband PSD by

Ss (f ; p) =
1
4
[
Sm̃ (f + fc; p) + Sm̃ (−f + fc; p)

]
(2.8 125)

then, equivalently, the PSD of (2.8-125) will have a tilt around the carrier. Also,
since in addition from (2.8-124) we have

Sm̃ (f ; 1− p) = Sm̃ (−f ; p) (2.8 126)

the tilt of the PSD of (2.8-125) reverses when the probability distribution of the
input data is reversed. Finally, for p = 1/2, i.e., balanced random data input, the
factor in brackets in (2.8-124) becomes equal to unity, and one obtains the well-
known two-sided PSD of conventional MSK [see (2.8-35)], which is symmetrical
around the origin.

For GMSK, the equivalent complex data symbols, {ã0,n}, are defined in terms
of the actual input data symbols {αn} by the iterative relations in the first
two equations of (2.8-79). Suppose that {αn} again characterizes a random
i.i.d. imbalanced source; then, the autocorrelation function of the first equivalent
symbol stream is given by (2.8-120) and its associated discrete Fourier transform
by (2.8-123). Thus, the PSD of the first component of the AMP representation
of GMSK is

S00 (f ; p) =
1
Tb
|P0 (f)|2

[
2p (1− p)

(1− 2p) (1 + sin 2πfTb) + 2p2

]
, P0 (f) �= F {C0 (t)}

(2.8 127)

with C0 (t) defined in (2.8-77) and evaluated from (2.8-69) and (2.8-70), using
the GMSK phase pulse.

Following a similar procedure as that used to derive (2.8-20), it can be shown
that the autocorrelation function of the second equivalent symbol stream (which
is also balanced and therefore has zero mean) is given by [60, Appendix]
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Rã1 (l) �= E
{
ã1,nã

∗
1,n+l

}
=




1, l = 0

−j (1− 2p)3 , l = 1,

[−j (1− 2p)]l , l ≥ 2

Rã1 (−l) = R∗ã1
(l)

(2.8 128)

with discrete Fourier transform

Sã1 (f) =
∞∑

l=−∞
Rã1 (l) e−j2πflTb = Sã0 (f) + 8p (1− 2p) (1− p) sin 2πfTb

(2.8 129)

Therefore, the PSD of the second component of the AMP representation of
GMSK is

S11 (f ; p) =
1
Tb
|P1 (f)|2 4p (1− p)

×
[

1
2 (1− 2p) (1 + sin 2πfTb) + 4p2

+ 2 (1− 2p) sin 2πfTb

]
,

P1 (f) �= F {C1 (t)} (2.8 130)

Note again that because of the presence of the term sin 2πfTb in the denominator
of (2.8-130), the equivalent baseband spectrum is not symmetric around f = 0.

What remains is to compute the cross-correlation function of the two equiv-
alent complex symbol streams. Following the same procedure as for obtain-
ing the autocorrelation function of the individual pulse streams, we obtain [60,
Appendix]

Rã10(l)
�=E

{
ã1,nã

∗
0,n+l

}
=




[−j(1− 2p)]l+1
, l ≥ 0

(1− 2p)2, l = −1

[j(1− 2p)]−(l+1)
, l ≤ −2

, Rã01(−l) = R∗ã10
(l)

(2.8 131)

with discrete Fourier transform
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Sã10 (f) =
∞∑

l=−∞
Rã10 (l) e−j2πflTb = ej2πfTb

[
Sã0 (f)− 4p (1− p)

]
(2.8 132)

Thus, the cross-spectrum of m̃(t) is from (2.8-116)

S10 (f ; p) =

8p (1− p) Re
{[

1
2 (1− 2p) (1 + sin 2πfTb) + 4p2

− 1
]
ej2πfTb

1
Tb
P0 (f)P ∗1 (f)

}
(2.8 133)

which is also not symmetric around f = 0. Finally, the complex baseband PSD
of GMSK (based on the two pulse stream AMP approximation) with imbalanced
data input becomes

Sm̃ (f ; p) = S00 (f ; p) + S11 (f ; p) + S10 (f ; p) (2.8 134)

where S00 (f ; p) , S11 (f ; p), and S10 (f ; p) are defined in (2.8-127), (2.8-130), and
(2.8-133), respectively.

Before proceeding, we point out that with some additional computation
(which would be warranted if one were interested in very low PSD levels), the
PSD evaluation procedure discussed above can be extended to include more
than just the first two (dominant) AMP pulse streams. In fact, the results of
Sec. 2.8.2.7a are quite general and, analogous to (2.8-120), (2.8-128), and (2.8-
131), all one needs to compute are the autocorrelation and cross-correlation func-
tions of the remainder of the equivalent data symbol streams, e.g., see (2.8-79)
for L = 4.

c. Precoded MSK and GMSK. As previously discussed in Secs. 2.8.1.3 and
2.8.2.3b, conventional I-Q-type receivers for MSK and GMSK modulations suffer
a small performance penalty due to the differential encoding operation inherent
in these modulations and, thus, the need for differential decoding at the receiver.
Precoding the input data with a differential decoder removes the need for dif-
ferential decoding at the receiver and, thus, eliminates this penalty. From a
spectral standpoint, this precoding operation has no effect on the PSD of the
transmitted signal when the input data are balanced. However, when the input
data are imbalanced, as is the case of interest in this section, the precoder has a
definite effect on the transmitted signal PSD. To see how this comes about, we
shall first consider the simpler case of MSK.
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Suppose that prior to phase modulation of the carrier the input data stream
α = (· · · , α−2, α−1, α0, α1, α2, · · ·) is first converted to a complex data stream via

α′n = αnj
n (2.8 135)

and then passed through a differential decoder that satisfies the recursion relation

βn = −jα′n
(
α′n−1

)∗ (2.8 136)

where βn denotes the complex binary output of the decoder (input to the MSK
modulator) in the nth bit interval. Substituting (2.8-135) into (2.8-136), we see
that

βn = −j (αnjn)
(
αn−1 (−j)n−1

)
= αnαn−1 (2.8 137)

which is a conventional differential decoding of the true input data bits. Since
the cascade of the MSK differential encoding relationship ã0,n = jαnã0,n−1 and
the differential decoder of (2.8-136) produces a unity gain transmission path, i.e.,

βn = −jã0,nã
∗
0,n−1 = −j (jαnã0,n−1) ã∗0,n−1 = αn |ã0,n−1|2 = αn (2.8 138)

one can deduce that for an input binary complex i.i.d. bit sequence, α′ =(
· · · , α′−2, α

′
−1, α

′
0, α
′
1, α
′
2, · · ·

)
, as in (2.8-135), precoded MSK using the precoder

(differential decoder) in (2.8-136) is exactly the same as a Laurent representation
of MSK (a single, complex symbol pulse stream with half-sinusoidal pulse shape)
with the same input data sequence, i.e., {ã0,n} = α′.

The consequence of the above equivalence is that since the conversion from
α to α′ does not change the statistical (correlation) properties of the sequence,
then based on the Laurent AMP representation, we conclude that the PSD of
precoded MSK is that of a linear modulation with an i.i.d. uncorrelated complex
imbalanced data source and as such, has a continuous component given by

SP MSK (f) |cont. = 4p (1− p)Tb
16
π2

cos2 2πfTb
(1− 16f2T 2

b )2
(2.8 139)

and a discrete component derived analogously to the results in Chap. 2 of Ref. 1
as
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SP MSK (f) |discr. = (1− 2p)2
∞∑

k=−∞

4
π2

1
(1− 4k2)2

δ

(
f − k

2Tb

)
(2.8 140)

where P-MSK denotes precoded MSK. Thus, in summary, the addition of a
precoder to the input of an MSK modulator with imbalanced data input removes
the tilt of the MSK spectrum due to the imbalance and replaces it with a discrete
spectral component, as is typical of linear modulations.

For precoded GMSK approximated by the first two AMP components, the
PSD in the presence of data imbalance was derived in Ref. 62. Without going
into great detail, the resulting expressions for the continuous and discrete PSD
components are given below:

SP GMSK (f) |cont. =

4p (1− p)
1
Tb
|P0 (f)|2 +

{
1− (1− 2p)6 + 2

[
(1− 2p)2 − (1− 2p)6

]
cos 2πfTb

+ 2
[
(1− 2p)4 − (1− 2p)6

]
cos 4πfTb

} 1
Tb
|P1 (f)|2

+ 2 Re
{[

(1− 2p)2 − (1− 2p)4
] [

1 + exp (−2πfTb) + exp (−4πfTb)
]}

× 1
Tb
P0 (f)P ∗1 (f) (2.8 141a)

SP GMSK (f) |discr. =

[
(1− 2p)2

∞∑
k=−∞

(
1

2Tb

)2 ∣∣∣∣P0

(
k

2Tb

)∣∣∣∣2 + (1− 2p)6
∞∑

k=−∞

(
1

2Tb

)2 ∣∣∣∣P1

(
k

2Tb

)∣∣∣∣2

+2 (1− 2p)2
∞∑

k=−∞

(
1

2Tb

)2

Re
{
P0

(
k

2Tb

)
P ∗1

(
k

2Tb

)}]
δ

(
f − k

2Tb

)

(2.8 141b)

where, as before, P0 (f) and P1 (f) are the Fourier transforms of the AMP pulse
shapes C0 (t) and C1 (t). As was true for precoded MSK, applying a precoder to
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a GMSK modulator with imbalanced data input removes the tilt of the GMSK
spectrum due to the imbalance and replaces it with a discrete spectral compo-
nent. Figures 2-42 and 2-43 illustrate the PSD of precoded GMSK as computed
from the sum of (2.8-141a) and (2.8-141b) for BTb = 0.25 with 10 percent data
imbalance and 60 percent data imbalance (p = 0.2), respectively. Included with
the theoretical results are numerical results obtained from computer simulation
[62]. As can be seen from these illustrations, the theory matches very closely the
simulation results.

2.8.2.8 Synchronization Techniques. In addition to the previously dis-
cussed advantages of the AMP representation in so far as spectrum evaluation
and ideal receiver implementation, there is yet another advantage having to
do with carrier synchronization of the receiver. Mengali and Andrea [63] dis-
cuss the use of the Laurent representation for CPM primarily in the context of
the single pulse stream approximation and, as such, arrive at decision-directed
phase estimation structures that are analogous to those used for MSK. Simi-
lar decision-directed (data-aided) methods of obtaining symbol time and carrier
phase tracking estimates for precoded CPM (in particular, GMSK) were also
considered in Ref. 55.

Fig. 2-42.  GMSK spectrum with precoding and 10 percent data imbalance.
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Fig. 2-43.  GMSK spectrum with precoding and 60 percent data imbalance.
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In this section of the monograph, we extend the carrier synchronization
problem two steps further, with the goal of achieving a better solution. First,
we consider the two pulse stream approximation suggested by Kaleh [46] rather
than the single (main) pulse approximation. Second, using the MAP approach
for carrier phase estimation as applied to pulse stream modulations with ISI
[64,65], we arrive at an optimum23 closed-loop structure that is not limited to
a decision-directed form and, moreover, accounts for the ISI directly within its
implementation. Finally, the tracking performance of this optimum structure is
evaluated in terms of its mean-square phase error. Some of the results to be
presented here are extracted from Ref. 66.

a. MAP Estimation of Carrier Phase. Consider the received signal,
y(t), composed of the sum of s(t; θ) and AWGN, n(t) (with single-sided PSD,
N0 watts/hertz), where s(t; θ) is given by (2.8-85) with the addition of a

23 By optimum we mean that closed-loop structure whose error signal is motivated by the
derivative of the log-likelihood ratio associated with the MAP estimation of carrier phase.
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uniformly distributed phase, θ, included in each carrier component. Based on an
observation of y(t) over the interval 0 ≤ t ≤ T0, where we arbitrarily assume that
T0 is an even integer multiple, say Kb, of the bit time, Tb (Ks = Kb/2 is then
an integer multiple of the symbol time, Ts = 2Tb), we wish to find the MAP
estimate of θ, i.e., the value of θ that maximizes the a posteriori probability,
p (θ |y(t) ), or since θ is assumed to be uniformly distributed, the value of θ that
maximizes the conditional probability p (y(t) |θ ). For an AWGN channel with
single-sided noise power spectral density N0 watts/hertz, p (y(t) |θ ) has the form

p
(
y(t)

∣∣∣aI0,aQ0 ,aI1,aQ1 , θ)
= C exp

(
− 1
N0

∫ T0

0

(
y(t)− s (t; θ)

)2
dt

)
(2.8 142)

where C is a normalization constant, and we have added to the conditioning
notation the implicit dependence of s(t; θ) on the i.i.d. I and Q data sequences of
the two pulse streams. For a constant envelope (energy) signal such as GMSK,
it is sufficient to consider only the term involving the correlation of y(t) and
s(t; θ) and lump the remaining terms into the normalization constant.24 Thus,
we rewrite (2.8-142) as

p
(
y(t)

∣∣∣aI0,aQ0 ,aI1,aQ1 , θ)
= C exp

(
2
N0

∫ T0

0

y(t)s (t; θ) dt

)
(2.8 143)

where for convenience, we still use C to denote the normalization constant.
Evaluation of (2.8-143) for s(t; θ) corresponding to a single binary pulse

stream, e.g., BPSK, with ISI was considered in Refs. 64 and 65. Extension
of the result to an s(t; θ) corresponding to a single pair of quadrature binary
pulse streams (such as QPSK) with identical ISI on the I and Q channels is
straightforward and was somewhat discussed in Ref. 64. What we have for the
AMP representation of GMSK in (2.8-85) is two pairs of offset quadrature bi-
nary pulse streams, each pair having different amounts of ISI. (Recall that C0(t)
is a pulse of width 5Tb, and C1(t) is a completely different pulse of width 3Tb.)

24 We note that for the general ISI problem as treated in Refs. 64 and 65, the energy-dependent

exponential term exp{−(1/N0)
∫ T0
0

s2(t; θ)dt} is not constant and, in fact, depends on the
data sequence. However, for the “exact” representation of GMSK by the two pulse stream
AMP form, we can make the constant envelope assumption and hence ignore the energy-
dependent term.
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Without belaboring the details, following substitution of (2.8-85) into (2.8-143)
and averaging over the four i.i.d. component data sequences aI0,a

Q
0 ,a

I
1,a

Q
1 , we

obtain [66]

p (y(t) |θ ) = C

Kb−1∏
k=−3
k odd

cosh {Ic (k, 0, θ)}
Kb−2∏
k=−4
k even

cosh {Is (k, 0, θ)}

×
Kb−2∏
k=−2
k even

cosh {Ic (k, 1, θ)}
Kb−1∏
k=−1
k odd

cosh {Is (k, 1, θ)} (2.8 144)

where

Ic (k, l, θ) �=
2
√

2Eb/Tb
N0

∫ KbTb

0

r(t) cos (ωct+ θ)Cl (t− kTb) dt

Is (k, l, θ) �=
2
√

2Eb/Tb
N0

∫ KbTb

0

r(t) sin (ωct+ θ)Cl (t− kTb) dt




(2.8 145)

Note that because of the presence of ISI in each of the component pulse streams,
the arguments of the hyperbolic cosine terms involve integration over the entire
observation interval 0 ≤ t ≤ KbTb rather than just integration over a single bit
interval, as is customary in such problems when ISI is absent. (Actually the
finite duration of C0 (t− kTb) and C1 (t− kTb) will truncate these integrations
to an interval (depending on the value of k) smaller than the observation time
interval but still larger than the bit interval.) Finally, the MAP estimate of θ,
i.e., θMAP, is the value of θ that maximizes (2.8-144).

b. Closed-Loop Carrier Synchronization of GMSK. As has been done many
times in the past to arrive at closed-loop carrier synchronizers based on open-
loop MAP estimates, one takes the natural logarithm of the likelihood ratio,
differentiates it with respect to θ, and then uses this as the error signal, e (θ), in
a closed-loop configuration. The reasoning behind this approach is that e (θ) will
be equal to zero when θ = θMAP and, thus, the closed loop will null at the point
corresponding to the open MAP phase estimate. Proceeding in this fashion, we
obtain
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e (θ) �=
d

dθ
ln p (y(t) |θ )

=
Kb−1∑
k=−3
k odd

Is (k, 0, θ) tanh {Ic (k, 0, θ)} −
Kb−2∑
k=−4
k even

Ic (k, 0, θ) tanh {Is (k, 0, θ)}

+
Kb−2∑
k=−2
k even

Is (k, 1, θ) tanh {Ic (k, 1, θ)} −
Kb−1∑
k=−1
k odd

Ic (k, 1, θ) tanh {Is (k, 1, θ)}

�= e0 (θ) + e1 (θ) (2.8 146)

where we have made use of the fact that from (2.8-145) Ic (k, l, θ) and Is (k, l, θ)
are derivatives of each other.

The result in (2.8-146) suggests a superposition of two loops, each contribut-
ing a component to the error signal corresponding to associated pulse stream
in the two pulse stream AMP representation of GMSK. Figures 2-44(a) and
2-44(b) illustrate the two loop components that must be superimposed to arrive
at the closed-loop GMSK carrier synchronizer suggested by the error signal in
(2.8-146).25 We offer this scheme as the “optimum” (in the sense of being MAP
motivated) GMSK carrier synchronizer. As is customary, the tanh nonlinearity
can be approximated by a linear or hard limiter device for low and high SNR
applications, respectively. The rate at which the loop updates its carrier phase
estimate can vary from every Tb to every KbTb seconds. In the case of the latter
extreme, the observation intervals used for each carrier phase estimate do not
overlap and, as such, the loop represents a sequential block-by-block implemen-
tation of the MAP open-loop estimator. In the case of the former extreme, the
observation intervals used for each carrier phase estimate overlap by (Kb − 1)Tb s
and, as such, the loop represents a sliding window MAP phase estimator.

c. Performance of the GMSK Loop Based on a Single Pulse AMP
Representation. In this section, we consider the mean-square error performance
of the previously derived closed loop, using just a single pulse stream for the
AMP representation of GMSK. As such, the error signal is described by only the
first two out of the four terms in (2.8-146), which leads to the implementation in
Fig. 2-44(a), i.e., there is no contribution to the error signal from Fig. 2-44(b).

25 A value of Kb = 6 (for any larger value, the noise-free (signal) components of Ic (k, l, θ)
and Is (k, l, θ) would not change due to the truncation of the integral caused by the time
limitation of C0 (t− kTb), and C1 (t− kTb)) is no doubt sufficient for these figures.
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In evaluating the performance, we shall consider the linear loop model, wherein
the tanh nonlinearity is replaced by a linear function.

To obtain the mean-square phase error performance, we follow the approach
taken in [11,67], resulting in the expression

σ2
2φ =

NEBL
K2
g

(2.8 147)

where BL denotes the loop bandwidth, NE is the flat single-sided PSD of the
equivalent noise process perturbing the loop, and Kg is the slope (with respect
to 2φ) of the loop S-curve at the origin. Without going into great detail, Kg is
obtained as

Kg = PT 2
s

2∑
i=−Ks+1

2∑
j=−Ks+1

[
−I2

i−(1/2),j + I2
i−(1/2),j−(1/2) + I2

i,j − I2
i,j−(1/2)

]
(2.8 148)

where P = Eb/Tb is the signal power, and the Ii,j ’s are ISI parameters defined
by

Ii,j
�=

1
Ts

∫ KsTs

0

C0(t+ iTs)C0(t+ jTs)dt = Ij,i (2.8 149)

Furthermore, NE is evaluated as

NE = 2N2
0T

3
s β + 4PN0T

4
s α (2.8 150)

where Ts = 2Tb is again the effective symbol rate in each of the quadrature
channels and the coefficients α and β are given as follows:

α =
2∑

i=−Ks+1

2∑
l=−Ks+1

[
I2
i−(1/2),l−(1/2) + I2

i,l − 2I2
i,l−(1/2)

]

+ 2
Ks−1∑
n=1

2∑
i=−Ks+1

2∑
l=−Ks+1

×
[
J2
i−(1/2),l−(1/2) (n) + J2

i,l (n)− J2
i,l−(1/2) (n)− J2

i−(1/2),l (n)
]

(2.8 151)
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and

β =
2∑

i=−Ks+1

2−n∑
l=−(Ks+n)+1

[
Ii−(1/2),l−(1/2)

×
2∑

j=−Ks+1

(
Ii−(1/2),j−(1/2)Il−(1/2),j−(1/2) + Ii−(1/2),jIl−(1/2),j

)

− Ii−(1/2),l

2∑
j=−Ks+1

(
Ii−(1/2),j−(1/2)Il,j−(1/2) + Ii−(1/2),jIl,j

)

+ Ii,l

2∑
j=−Ks+1

(
Ii,jIl,j + Ii,j−(1/2)Il,j−(1/2)

)

−Ii,l−(1/2)

2∑
j=−Ks+1

(
Ii,jIl−(1/2),j + Ii,j−(1/2)Il−(1/2),j−(1/2)

)]

+ 2
Ks−1∑
n=1

2∑
i=−Ks+1

2−n∑
l=−(Ks+n)+1

[
Ji−(1/2),l−(1/2)(n)

×
2∑

j=−Ks+1

(
Ii−(1/2),j−(1/2)Il−(1/2),j−(1/2)(n) + Ii−(1/2),jIl−(1/2),j(n)

)

− Ji−(1/2),l(n)
2∑

j=−Ks+1

(
Ii−(1/2),j−(1/2)Il,j−(1/2)(n) + Ii−(1/2),jIl,j(n)

)

+ Ji,l(n)
2∑

j=−Ks+1

(
Ii,jIl,j(n) + Ii,j−(1/2)Il,j−(1/2)(n)

)

−Ji,l−(1/2)(n)
2∑

j=−Ks+1

(
Ii,jIl−(1/2),j(n) + Ii,j−(1/2)Il−(1/2),j−(1/2)(n)

)]

(2.8 152)
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where the additional ISI parameters are defined by

Ii,j (k) �=
1
Ts

∫ (k+Ks)Ts

kTs

C0(t+ iTs)C0(t+ jTs)dt = Ij,i (k) (2.8 153)

and

Ji,j (k) �=
1
Ts

∫ KsTs

kTs

C0(t+ iTs)C0(t+ jTs)dt = Jj,i (k) (2.8 154)

which differs from Ii,j(k) of (2.8-153) only in that the upper limit is kept fixed
at KsTs = KbTb, independent of k. Note also that Ji,j(0) = Ii,j(0) = Ii,j , as
defined in (2.8-149).

It is customary to rewrite (2.8-147) in the form26

σ2
2φ =

4N0BL
PSL

=
4

ρPLLSL
(2.8 155)

where ρPLL = P/N0BL denotes the loop SNR for a phase-locked loop (PLL) and
SL denotes the so-called squaring loss, which represents the additional degrada-
tion in loop SNR caused by the presence of S×S, S×N , and N×N components
in the error signal. Combining (2.8-147) and (2.8-153), we obtain the following
expression for the squaring loss:

SL =

{
2∑

i=−Ks+1

2∑
j=−Ks+1

[
−I2

i−(1/2),j + I2
i−(1/2),j−(1/2) + I2

i,j − I2
i,j−(1/2)

]}2

NE

4PN0T 4
s

(2.8 156)

From (2.8-150), it is possible to write the equivalent normalized flat noise spectral
density as

NE

4PN0T 4
s

= α+
β

2PTs/N0
= α+

β

2Es/N0
(2.8 157)

26 The factor of “4” in (2.8-155) comes from the fact that we are characterizing the variance of
the 2φ process rather than the φ process.
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where Es/N0 is the symbol energy-to-noise ratio. Finally, using (2.8-157) in
(2.8-156), we get the desired result for the squaring loss, namely,

SL =

{
2∑

i=−Ks+1

2∑
j=−Ks+1

[
−I2

i−(1/2),j + I2
i−(1/2),j−(1/2) + I2

i,j − I2
i,j−(1/2)

]}2

α+
β

2Es/N0

(2.8 158)

which is expressed entirely in terms of the symbol energy-to-noise ratio and the
ISI parameters defined in (2.8-149), (2.8-153), and (2.8-154), all of which can
easily be computed from knowledge of the main pulse shape, C0(t).

For GMSK with BTb = 0.25 (equivalently L = 4) corresponding to the
pulse shape C0(t) shown in Fig. 2-32, Fig. 2-45 illustrates the squaring loss (in
dB) as computed from (2.8-158) versus Eb/N0 = (1/2)Es/N0 (in dB) with Ks,
the number of symbols in the observation interval, as a parameter. Because
the dominant pulse in the AMP representation of GMSK is 5 bits (2.5 sym-
bols) long, it appears that extending the observation beyond the duration of the
pulse (i.e., values of Ks > 3) provides no further improvement in performance.
In fact, the results for Ks = 2 and Ks = 3 are virtually indistinguishable from

Fig. 2-45.  The squaring loss performance of OQPSK 

and GMSK loops.
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each other. Thus, for the chosen value of BTb, implementing the loop based on
a value of Ks = 2 is sufficient, thereby reducing the implementation complexity,
which increases with the value of Ks. Note, however, that there is a significant
improvement in performance by building the structure with Ks = 2 (Kb = 4)
rather than Ks = 1 (Kb = 2).

Also shown in Fig. 2-45 for purpose of comparison is the performance of the
corresponding MAP-motivated (optimum) OQPSK carrier synchronization loop,
as obtained from the results in Ref. 12, which employs square pulses of dura-
tion Ts and so does not suffer from ISI. Although the OQPSK loop outperforms
that of GMSK, we see that the difference between the two (in terms of squar-
ing loss or, equivalently, in terms of equivalent loop SNR) is only a little more
than 1 dB. This difference appears to be constant across a large range of Eb/N0

values (−10 dB to 10 dB) and is a small price to pay for the large improvement
in bandwidth efficiency that GMSK affords over OQPSK. Of particular impor-
tance is that the loop will, in fact, acquire and track a GMSK modulation at
very low Eb/N0 values, which is important in applications where high-power,
efficient, error-correction coding, e.g., convolutional or turbo coding, is added to
the system.

Since squaring loss is not a physical quantity that can be determined from
computer simulation, to demonstrate the excellent agreement between simula-
tion and analysis, Fig. 2-46 directly plots the equivalent linear loop SNR [i.e.,

GMSK1 (      = 0.25,      = 1)

2GMSK modeled by all 8 AMP components.

Fig. 2-46.  Loop SNR performance of OQPSK and GMSK loops.
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the reciprocal of the mean-square phase error as computed from (2.8-155)] ver-
sus Eb/N0 (in dB) for the same parameter values as in Fig. 2-45 and a loop
bandwidth-bit time product, BLTb = 0.001. Here, several different GMSK op-
tions were investigated. All of the analytically computed results assumed a
carrier loop implementation based on an AMP approximation of the transmit-
ted GMSK corresponding to one (the main) pulse stream. For this case, we
see virtually perfect agreement between simulation and analytically computed
results. For the computer simulation, another option was explored wherein the
true GMSK (which requires eight AMP components to fully represent the trans-
mitted waveform) was transmitted. Here, we have a bit of a mismatch between
the receiver and the transmitter because the carrier loop is matched to only one
of the eight AMP components that compose the GMSK modulation. Thus, at
high SNR (where the signal dominates the noise), the simulation reveals a bit of
performance degradation. This performance degradation can be diminished by
implementing the receiver with a second layer corresponding to the second AMP
component and adding the two components to produce the resulting error signal,
as was previously suggested. Although this requires additional implementation
complexity, in some applications, it may be warranted.

2.9 Simulation Performance
Aside from supporting analysis, simulations are especially useful in provid-

ing results in situations where analysis is either unavailable or, because of the
complexity of the system model, would be too difficult to perform. In this sec-
tion, we present some of these simulation results obtained from modeling the
various systems on a Signal Processing WorkSystem (SPW) workstation.

Figure 2-47 is a block diagram of the simulation used to model precoded
GMSK with concatenated block [(255,233) Reed-Solomon] and convolutional
(rate 1/2, constraint length K = 7) error correction coding. The uncoded por-
tion of the receiver is based on the suboptimum scheme proposed by Kaleh [46]
(and discussed in Sec. 2.8.2.6b), which incorporates a Wiener filter following
the matched filter prior to the decision device. The idealized (no data imbal-
ance) BEP performance obtained from running this simulation is illustrated in
Fig. 2-48, corresponding to values of BTb = 0.25 and BTb = 0.50. Also included
for comparison is the performance of BPSK with the same error correction cod-
ing. We observe in this figure that whereas coded GMSK with BTb = 0.25
suffers a small Eb/N0 penalty (relative to coded BPSK) of something less than
0.2 dB, coded GMSK with BTb = 0.50 has virtually identical performance to
coded BPSK. This is a rather striking result when one considers the signifi-
cant improvement in bandwidth efficiency offered by the former relative to the
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latter. If one now eliminates the error correction coding from the simulation,
then equivalent performance results are illustrated in Fig. 2-49. Here again,
we observe that GMSK with BTb = 0.50 has virtually identical performance
to BPSK. Finally, the performance of uncoded GMSK in the presence of data
imbalance is illustrated in Fig. 2-50 for the case of BTb = 0.25. Surprisingly,
even with 60 percent data imbalance, the degradation in Eb/N0 is rather small
(on the order of 0.25 dB). If one increases the value of BTb to 0.5, then even
at this rather large data imbalance, the degradation becomes virtually nil. The
apparent conclusion to be drawn from what is illustrated in these figures is that
while data imbalance has a pronounced effect on the PSD of GMSK, its effect
on BEP is quite insignificant.
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Fig. 2-48.  Bit-error probability performance of precoded GMSK with 
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